# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import yaml from paddlerec.core.utils import envs trainer_abs = os.path.join( os.path.dirname(os.path.abspath(__file__)), "trainers") trainers = {} def trainer_registry(): trainers["SingleTrainer"] = os.path.join(trainer_abs, "single_trainer.py") trainers["SingleInfer"] = os.path.join(trainer_abs, "single_infer.py") trainers["ClusterTrainer"] = os.path.join(trainer_abs, "cluster_trainer.py") trainers["CtrCodingTrainer"] = os.path.join(trainer_abs, "ctr_coding_trainer.py") trainers["CtrModulTrainer"] = os.path.join(trainer_abs, "ctr_modul_trainer.py") trainers["TDMSingleTrainer"] = os.path.join(trainer_abs, "tdm_single_trainer.py") trainers["TDMClusterTrainer"] = os.path.join(trainer_abs, "tdm_cluster_trainer.py") trainer_registry() class TrainerFactory(object): def __init__(self): pass @staticmethod def _build_trainer(yaml_path): print(envs.pretty_print_envs(envs.get_global_envs())) train_mode = envs.get_trainer() trainer_abs = trainers.get(train_mode, None) if trainer_abs is None: if not os.path.isfile(train_mode): raise IOError("trainer {} can not be recognized".format( train_mode)) trainer_abs = train_mode train_mode = "UserDefineTrainer" trainer_class = envs.lazy_instance_by_fliename(trainer_abs, train_mode) trainer = trainer_class(yaml_path) return trainer @staticmethod def create(config): _config = envs.load_yaml(config) envs.set_global_envs(_config) envs.update_workspace() trainer = TrainerFactory._build_trainer(config) return trainer # server num, worker num if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError("need a yaml file path argv") trainer = TrainerFactory.create(sys.argv[1]) trainer.run()