# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def _init_hyper_parameters(self): self.sparse_feature_number = envs.get_global_env( "hyper_parameters.sparse_feature_number", None) self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4) def net(self, inputs, is_infer=False): init_value_ = 0.1 is_distributed = True if envs.get_trainer() == "CtrTrainer" else False # ------------------------- network input -------------------------- sparse_var = self._sparse_data_var self.label = self._dense_data_var[0] def embedding_layer(input): emb = fluid.embedding( input=input, is_sparse=True, is_distributed=is_distributed, size=[self.sparse_feature_number + 1, 1], padding_idx=0, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_), regularizer=fluid.regularizer.L1DecayRegularizer( self.reg))) reshape_emb = fluid.layers.reshape(emb, shape=[-1, 1]) return reshape_emb sparse_embed_seq = list(map(embedding_layer, sparse_var)) weight = fluid.layers.concat(sparse_embed_seq, axis=0) if is_infer: fluid.layers.Print(weight) weight_sum = fluid.layers.reduce_sum(weight) b_linear = fluid.layers.create_parameter( shape=[1], dtype='float32', default_initializer=fluid.initializer.ConstantInitializer(value=0)) self.predict = fluid.layers.relu(weight_sum + b_linear) cost = fluid.layers.square_error_cost( input=self.predict, label=self.label) avg_cost = fluid.layers.reduce_sum(cost) self._cost = avg_cost self._metrics["COST"] = self._cost self._metrics["Predict"] = self.predict if is_infer: self._infer_results["Predict"] = self.predict self._infer_results["COST"] = self._cost