Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
d0a9258e
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d0a9258e
编写于
9月 24, 2020
作者:
Y
yinhaofeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
readme
上级
7629ffa8
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
47 addition
and
106 deletion
+47
-106
models/rank/deepfm/readme.md
models/rank/deepfm/readme.md
+47
-106
未找到文件。
models/rank/deepfm/readme.md
浏览文件 @
d0a9258e
...
...
@@ -43,6 +43,10 @@
year={2017}
}
```
在全量数据下模型的指标如下:
| 模型 | auc | batch_size | thread_num| epoch_num| Time of each epoch |
| :------| :------ | :------| :------ | :------| :------ | :------ |
| deepFM | 0.8044 | 1024 | 10 | 2 | 约3.5小时 |
## 数据准备
### 数据来源
训练及测试数据集选用
[
Display Advertising Challenge
](
https://www.kaggle.com/c/criteo-display-ad-challenge/
)
所用的Criteo数据集。该数据集包括两部分:训练集和测试集。训练集包含一段时间内Criteo的部分流量,测试集则对应训练数据后一天的广告点击流量。
...
...
@@ -74,6 +78,28 @@ os : windows/linux/macos
```
python -m paddlerec.run -m models/rank/deepfm/config.yaml
```
使用样例数据快速跑通的结果实例:
```
PaddleRec: Runner train_runner Begin
Executor Mode: train
processor_register begin
Running SingleInstance.
Running SingleNetwork.
Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:[]
Running SingleStartup.
Running SingleRunner.
2020-09-24 03:45:57,924-INFO: [Train] batch: 1, time_each_interval: 2.22s, BATCH_AUC: [0.43357143 0.4689441 0.43859649 0.42124542 0.44302615 0.44444444
0.48305085 0.47866667 0.48032407 0.45833333], AUC: [0.43357143 0.4562963 0.43859649 0.47866667 0.44302615 0.44444444
0.48305085 0.4562963 0.49451754 0.45833333]
epoch 0 done, use time: 2.38709902763, global metrics: BATCH_AUC=2.2195661068, AUC=[0.43357143 0.4689441 0.43859649 0.42124542 0.44302615 0.44444444
0.48305085 0.47866667 0.48032407 0.45833333]
2020-09-24 03:45:59,023-INFO: [Train] batch: 1, time_each_interval: 0.07s, BATCH_AUC: [0.4570095 0.45771188 0.45467121 0.47039474 0.46313874 0.45297619
0.46199579 0.45470861 0.47237934 0.47326632], AUC: [0.4570095 0.45771188 0.45575717 0.47039474 0.46313874 0.45297619
0.46199579 0.45470861 0.47237934 0.47326632]
epoch 1 done, use time: 0.0733981132507, global metrics: BATCH_AUC=0.0677909851074, AUC=[0.4570095 0.45771188 0.45467121 0.47039474 0.46313874 0.45297619
0.46199579 0.45470861 0.47237934 0.47326632]
PaddleRec Finish
```
## 模型组网
...
...
@@ -88,102 +114,37 @@ $$Out=sigmoid(b + \sum^{N}_{i=1}W_iX_i + \sum^{N-1}_{i=1}\sum^{N}_{j=i+1}W_{ij}X
用公式表示如下:
$$
\s
um^{N}_{i=1}W_iX_i$$
```
python
first_weights_re
=
fluid
.
embedding
(
input
=
feat_idx
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
dtype
=
'float32'
,
size
=
[
self
.
sparse_feature_number
+
1
,
1
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
),
regularizer
=
fluid
.
regularizer
.
L1DecayRegularizer
(
self
.
reg
)))
first_weights
=
fluid
.
layers
.
reshape
(
first_weights_re
,
shape
=
[
-
1
,
self
.
num_field
,
1
])
# None * num_field * 1
y_first_order
=
fluid
.
layers
.
reduce_sum
((
first_weights
*
feat_value
),
1
)
```
### 二阶项部分
二阶项部分主要实现了公式中的交叉项部分,也就是特征的组合部分。Wij求解的思路是通过矩阵分解的方法。所有的二次项参数Wij可以组成一个对称阵W,那么这个矩阵就可以分解为 $W=V^TV$,V 的第 i 列便是第 i 维特征的隐向量。交叉项的展开式如下:
$$
\s
um^{N-1}_{i=1}
\s
um^{N}_{j=i+1}W_{ij}X_iX_j =1/2
\s
um^{k}_{j=1}((
\s
um^{N}_{i=1}W_iX_i)^2-
\s
um^{N}_{i=1}W_i^2X_i^2)$$
```
python
feat_embeddings_re
=
fluid
.
embedding
(
input
=
feat_idx
,
is_sparse
=
True
,
is_distributed
=
is_distributed
,
dtype
=
'float32'
,
size
=
[
self
.
sparse_feature_number
+
1
,
self
.
sparse_feature_dim
],
padding_idx
=
0
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
/
math
.
sqrt
(
float
(
self
.
sparse_feature_dim
)))))
feat_embeddings
=
fluid
.
layers
.
reshape
(
feat_embeddings_re
,
shape
=
[
-
1
,
self
.
num_field
,
self
.
sparse_feature_dim
])
# None * num_field * embedding_size
# None * num_field * embedding_size
feat_embeddings
=
feat_embeddings
*
feat_value
# sum_square part
summed_features_emb
=
fluid
.
layers
.
reduce_sum
(
feat_embeddings
,
1
)
# None * embedding_size
summed_features_emb_square
=
fluid
.
layers
.
square
(
summed_features_emb
)
# None * embedding_size
# square_sum part
squared_features_emb
=
fluid
.
layers
.
square
(
feat_embeddings
)
# None * num_field * embedding_size
squared_sum_features_emb
=
fluid
.
layers
.
reduce_sum
(
squared_features_emb
,
1
)
# None * embedding_size
y_second_order
=
0.5
*
fluid
.
layers
.
reduce_sum
(
summed_features_emb_square
-
squared_sum_features_emb
,
1
,
keep_dim
=
True
)
# None * 1
```
### dnn部分
相比fm模型,我们去除了fm模型中的偏移量,而加入了dnn部分作为特征间的高阶组合,通过并行的方式组合fm和dnn两种方法,两者共用底层的embedding数据。dnn部分的主要组成为三个全连接层,每层FC的输出维度都为400,每层FC都后接一个relu激活函数,每层FC的初始化方式为符合正态分布的随机初始化.
最后接了一层输出维度为1的fc层,方便与fm部分综合计算预测值。
```
python
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
self
.
num_field
*
self
.
sparse_feature_dim
])
for
s
in
self
.
layer_sizes
:
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
size
=
s
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
/
math
.
sqrt
(
float
(
10
)))),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)))
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
size
=
1
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)))
```
### Loss及Auc计算
-
预测的结果将FM的一阶项部分,二阶项部分以及dnn部分相加,再通过激活函数sigmoid给出,为了得到每条样本分属于正负样本的概率,我们将预测结果和
`1-predict`
合并起来得到predict_2d,以便接下来计算auc。
-
每条样本的损失为负对数损失值,label的数据类型将转化为float输入。
-
该batch的损失
`avg_cost`
是各条样本的损失之和
-
我们同时还会计算预测的auc,auc的结果由
`fluid.layers.auc()`
给出,该层的返回值有三个,分别是全局auc:
`auc_var`
,当前batch的auc:
`batch_auc_var`
,以及auc_states:
`_`
,auc_states包含了
`batch_stat_pos, batch_stat_neg, stat_pos, stat_neg`
信息。
```
python
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_first_order
+
y_second_order
+
y_dnn
)
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
fluid
.
layers
.
cast
(
self
.
label
,
"float32"
))
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
auc_var
,
batch_auc_var
,
_
=
fluid
.
layers
.
auc
(
input
=
predict_2d
,
label
=
label_int
,
slide_steps
=
0
)
```
完成上述组网后,我们最终可以通过训练拿到
`auc`
指标。
## 效果复现
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据。如果需要复现readme中的效果,请按如下步骤依次操作即可。
1.
确认您当前所在目录为PaddleRec/models/rank/deepfm
2.
在data目录下运行数据一键处理脚本,命令如下:
```
cd data
sh run.sh
cd ..
```
3.
退回deepfm目录中,打开文件config.yaml,更改其中的参数
将workspace改为您当前的绝对路径。(可用pwd命令获取绝对路径)
将train_sample中的batch_size从5改为1024
将train_sample中的data_path改为{workspace}/data/slot_train_data
将infer_sample中的batch_size从5改为1024
将infer_sample中的data_path改为{workspace}/data/slot_test_data
4.
开始训练。运行命令启动训练即可得到相应auc指标
```
python -m paddlerec.run -m ./config.yaml
```
5.
全量数据的训练结果示例如下:
```
PaddleRec: Runner infer_runner Begin
Executor Mode: infer
...
...
@@ -211,26 +172,6 @@ Infer infer_phase of epoch 1 done, use time: 1764.81796193, global metrics: AUC=
PaddleRec Finish
```
## 效果复现
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据。如果需要复现readme中的效果,请按如下步骤依次操作即可。
1.
确认您当前所在目录为PaddleRec/models/rank/deepfm
2.
在data目录下运行数据一键处理脚本,命令如下:
```
cd data
sh run.sh
cd ..
```
3.
退回deepfm目录中,打开文件config.yaml,更改其中的参数
将workspace改为您当前的绝对路径。(可用pwd命令获取绝对路径)
将train_sample中的batch_size从5改为512
将train_sample中的data_path改为{workspace}/data/slot_train_data
将infer_sample中的batch_size从5改为512
将infer_sample中的data_path改为{workspace}/data/slot_test_data
4.
开始训练。运行命令启动训练即可得到相应auc指标
```
python -m paddlerec.run -m ./config.yaml
```
## 进阶使用
## FAQ
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录