未验证 提交 b8e17866 编写于 作者: Y yaoxuefeng 提交者: GitHub

add rank model BST (#134)

* add rank model BST

* update readme
上级 5fd7f899
......@@ -56,6 +56,7 @@
| Rank | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| Rank | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| Rank | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| Rank | [BST](models/rank/BST/model.py) | ✓ | x | ✓ | x | [DLP-KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf) |
| Rank | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| Rank | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| Rank | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
......
......@@ -61,6 +61,7 @@
| 排序 | [xDeepFM](models/rank/xdeepfm/model.py) | ✓ | x | ✓ | x | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023) |
| 排序 | [DIN](models/rank/din/model.py) | ✓ | x | ✓ | x | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823) |
| 排序 | [DIEN](models/rank/dien/model.py) | ✓ | x | ✓ | x | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423) |
| 排序 | [BST](models/rank/BST/model.py) | ✓ | x | ✓ | x | [DLP_KDD 2019][Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf) |
| 排序 | [AutoInt](models/rank/AutoInt/model.py) | ✓ | x | ✓ | x | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/pdf/1810.11921.pdf) |
| 排序 | [Wide&Deep](models/rank/wide_deep/model.py) | ✓ | x | ✓ | x | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/2988450.2988454) |
| 排序 | [FGCNN](models/rank/fgcnn/model.py) | ✓ | ✓ | ✓ | ✓ | [WWW 2019][Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf) |
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# global settings
debug: false
workspace: "paddlerec.models.rank.BST"
dataset:
- name: sample_1
type: DataLoader
batch_size: 5
data_path: "{workspace}/data/train_data"
sparse_slots: "label history cate position target target_cate target_position"
- name: infer_sample
type: DataLoader
batch_size: 5
data_path: "{workspace}/data/train_data"
sparse_slots: "label history cate position target target_cate target_position"
hyper_parameters:
optimizer:
class: SGD
learning_rate: 0.0001
use_DataLoader: True
item_emb_size: 96
cat_emb_size: 96
position_emb_size: 96
is_sparse: False
item_count: 63001
cat_count: 801
position_count: 5001
n_encoder_layers: 1
d_model: 288
d_key: 48
d_value: 48
n_head: 6
dropout_rate: 0
postprocess_cmd: "da"
prepostprocess_dropout: 0
d_inner_hid: 512
relu_dropout: 0.0
act: "relu"
fc_sizes: [1024, 512, 256]
mode: train_runner
runner:
- name: train_runner
class: train
epochs: 1
device: cpu
init_model_path: ""
save_checkpoint_interval: 1
save_inference_interval: 1
save_checkpoint_path: "increment_BST"
save_inference_path: "inference_BST"
print_interval: 1
- name: infer_runner
class: infer
device: cpu
init_model_path: "increment_BST/0"
print_interval: 1
phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: sample_1
thread_num: 1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import random
import pickle
random.seed(1234)
print("read and process data")
with open('./raw_data/remap.pkl', 'rb') as f:
reviews_df = pickle.load(f)
cate_list = pickle.load(f)
user_count, item_count, cate_count, example_count = pickle.load(f)
train_set = []
test_set = []
for reviewerID, hist in reviews_df.groupby('reviewerID'):
pos_list = hist['asin'].tolist()
time_list = hist['unixReviewTime'].tolist()
def gen_neg():
neg = pos_list[0]
while neg in pos_list:
neg = random.randint(0, item_count - 1)
return neg
neg_list = [gen_neg() for i in range(len(pos_list))]
for i in range(1, len(pos_list)):
hist = pos_list[:i]
# set maximum position value
time_seq = [
min(int((time_list[i] - time_list[j]) / (3600 * 24)), 5000)
for j in range(i)
]
if i != len(pos_list) - 1:
train_set.append((reviewerID, hist, pos_list[i], 1, time_seq))
train_set.append((reviewerID, hist, neg_list[i], 0, time_seq))
else:
label = (pos_list[i], neg_list[i])
test_set.append((reviewerID, hist, label, time_seq))
random.shuffle(train_set)
random.shuffle(test_set)
assert len(test_set) == user_count
def print_to_file(data, fout, slot):
if not isinstance(data, list):
data = [data]
for i in range(len(data)):
fout.write(slot + ":" + str(data[i]))
fout.write(' ')
print("make train data")
with open("paddle_train.txt", "w") as fout:
for line in train_set:
history = line[1]
target = line[2]
label = line[3]
position = line[4]
cate = [cate_list[x] for x in history]
print_to_file(history, fout, "history")
print_to_file(cate, fout, "cate")
print_to_file(position, fout, "position")
print_to_file(target, fout, "target")
print_to_file(cate_list[target], fout, "target_cate")
print_to_file(0, fout, "target_position")
print_to_file(label, fout, "label")
fout.write("\n")
print("make test data")
with open("paddle_test.txt", "w") as fout:
for line in test_set:
history = line[1]
target = line[2]
position = line[3]
cate = [cate_list[x] for x in history]
print_to_file(history, fout, "history")
print_to_file(cate, fout, "cate")
print_to_file(position, fout, "position")
print_to_file(target[0], fout, "target")
print_to_file(cate_list[target[0]], fout, "target_cate")
print_to_file(0, fout, "target_position")
fout.write("label:1\n")
print_to_file(history, fout, "history")
print_to_file(cate, fout, "cate")
print_to_file(position, fout, "position")
print_to_file(target[0], fout, "target")
print_to_file(cate_list[target[1]], fout, "target_cate")
print_to_file(0, fout, "target_position")
fout.write("label:0\n")
print("make config data")
with open('config.txt', 'w') as f:
f.write(str(user_count) + "\n")
f.write(str(item_count) + "\n")
f.write(str(cate_count) + "\n")
f.wrire(str(50000) + "\n")
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import pickle
import pandas as pd
def to_df(file_path):
with open(file_path, 'r') as fin:
df = {}
i = 0
for line in fin:
df[i] = eval(line)
i += 1
df = pd.DataFrame.from_dict(df, orient='index')
return df
print("start to analyse reviews_Electronics_5.json")
reviews_df = to_df('./raw_data/reviews_Electronics_5.json')
with open('./raw_data/reviews.pkl', 'wb') as f:
pickle.dump(reviews_df, f, pickle.HIGHEST_PROTOCOL)
print("start to analyse meta_Electronics.json")
meta_df = to_df('./raw_data/meta_Electronics.json')
meta_df = meta_df[meta_df['asin'].isin(reviews_df['asin'].unique())]
meta_df = meta_df.reset_index(drop=True)
with open('./raw_data/meta.pkl', 'wb') as f:
pickle.dump(meta_df, f, pickle.HIGHEST_PROTOCOL)
#! /bin/bash
set -e
echo "begin download data"
mkdir raw_data
cd raw_data
wget -c http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/reviews_Electronics_5.json.gz
gzip -d reviews_Electronics_5.json.gz
wget -c http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/meta_Electronics.json.gz
gzip -d meta_Electronics.json.gz
echo "download data successfully"
cd ..
python convert_pd.py
python remap_id.py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import random
import pickle
import numpy as np
random.seed(1234)
with open('./raw_data/reviews.pkl', 'rb') as f:
reviews_df = pickle.load(f)
reviews_df = reviews_df[['reviewerID', 'asin', 'unixReviewTime']]
with open('./raw_data/meta.pkl', 'rb') as f:
meta_df = pickle.load(f)
meta_df = meta_df[['asin', 'categories']]
meta_df['categories'] = meta_df['categories'].map(lambda x: x[-1][-1])
def build_map(df, col_name):
key = sorted(df[col_name].unique().tolist())
m = dict(zip(key, range(len(key))))
df[col_name] = df[col_name].map(lambda x: m[x])
return m, key
asin_map, asin_key = build_map(meta_df, 'asin')
cate_map, cate_key = build_map(meta_df, 'categories')
revi_map, revi_key = build_map(reviews_df, 'reviewerID')
user_count, item_count, cate_count, example_count =\
len(revi_map), len(asin_map), len(cate_map), reviews_df.shape[0]
print('user_count: %d\titem_count: %d\tcate_count: %d\texample_count: %d' %
(user_count, item_count, cate_count, example_count))
meta_df = meta_df.sort_values('asin')
meta_df = meta_df.reset_index(drop=True)
reviews_df['asin'] = reviews_df['asin'].map(lambda x: asin_map[x])
reviews_df = reviews_df.sort_values(['reviewerID', 'unixReviewTime'])
reviews_df = reviews_df.reset_index(drop=True)
reviews_df = reviews_df[['reviewerID', 'asin', 'unixReviewTime']]
cate_list = [meta_df['categories'][i] for i in range(len(asin_map))]
cate_list = np.array(cate_list, dtype=np.int32)
with open('./raw_data/remap.pkl', 'wb') as f:
pickle.dump(reviews_df, f, pickle.HIGHEST_PROTOCOL) # uid, iid
pickle.dump(cate_list, f, pickle.HIGHEST_PROTOCOL) # cid of iid line
pickle.dump((user_count, item_count, cate_count, example_count), f,
pickle.HIGHEST_PROTOCOL)
pickle.dump((asin_key, cate_key, revi_key), f, pickle.HIGHEST_PROTOCOL)
此差异已折叠。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act="relu")
if dropout_rate:
hidden = layers.dropout(
hidden,
dropout_prob=dropout_rate,
seed=dropout_seed,
is_test=False)
out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out = layers.layer_norm(
out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.initializer.Constant(1.),
bias_attr=fluid.initializer.Constant(0.))
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(
out,
dropout_prob=dropout_rate,
seed=dropout_seed,
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.item_emb_size = envs.get_global_env(
"hyper_parameters.item_emb_size", 64)
self.cat_emb_size = envs.get_global_env(
"hyper_parameters.cat_emb_size", 64)
self.position_emb_size = envs.get_global_env(
"hyper_parameters.position_emb_size", 64)
self.act = envs.get_global_env("hyper_parameters.act", "sigmoid")
self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse",
False)
# significant for speeding up the training process
self.use_DataLoader = envs.get_global_env(
"hyper_parameters.use_DataLoader", False)
self.item_count = envs.get_global_env("hyper_parameters.item_count",
63001)
self.cat_count = envs.get_global_env("hyper_parameters.cat_count", 801)
self.position_count = envs.get_global_env(
"hyper_parameters.position_count", 5001)
self.n_encoder_layers = envs.get_global_env(
"hyper_parameters.n_encoder_layers", 1)
self.d_model = envs.get_global_env("hyper_parameters.d_model", 96)
self.d_key = envs.get_global_env("hyper_parameters.d_key", None)
self.d_value = envs.get_global_env("hyper_parameters.d_value", None)
self.n_head = envs.get_global_env("hyper_parameters.n_head", None)
self.dropout_rate = envs.get_global_env(
"hyper_parameters.dropout_rate", 0.0)
self.postprocess_cmd = envs.get_global_env(
"hyper_parameters.postprocess_cmd", "da")
self.preprocess_cmd = envs.get_global_env(
"hyper_parameters.postprocess_cmd", "n")
self.prepostprocess_dropout = envs.get_global_env(
"hyper_parameters.prepostprocess_dropout", 0.0)
self.d_inner_hid = envs.get_global_env("hyper_parameters.d_inner_hid",
512)
self.relu_dropout = envs.get_global_env(
"hyper_parameters.relu_dropout", 0.0)
self.layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes",
None)
def multi_head_attention(self, queries, keys, values, d_key, d_value,
d_model, n_head, dropout_rate):
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3
):
raise ValueError(
"Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = fluid.layers.fc(input=queries,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
k = fluid.layers.fc(input=keys,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
v = fluid.layers.fc(input=values,
size=d_value * n_head,
bias_attr=False,
num_flatten_dims=2)
return q, k, v
def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Reshape input tensors at the last dimension to split multi-heads
and then transpose. Specifically, transform the input tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] to the output tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped_q = fluid.layers.reshape(
x=queries, shape=[0, 0, n_head, d_key], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
reshaped_k = fluid.layers.reshape(
x=keys, shape=[0, 0, n_head, d_key], inplace=True)
k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
reshaped_v = fluid.layers.reshape(
x=values, shape=[0, 0, n_head, d_value], inplace=True)
v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])
return q, k, v
def scaled_dot_product_attention(q, k, v, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
product = fluid.layers.matmul(
x=q, y=k, transpose_y=True, alpha=d_key**-0.5)
weights = fluid.layers.softmax(product)
if dropout_rate:
weights = fluid.layers.dropout(
weights,
dropout_prob=dropout_rate,
seed=None,
is_test=False)
out = fluid.layers.matmul(weights, v)
return out
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = fluid.layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return fluid.layers.reshape(
x=trans_x,
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
inplace=True)
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value)
ctx_multiheads = scaled_dot_product_attention(q, k, v, d_model,
dropout_rate)
out = __combine_heads(ctx_multiheads)
proj_out = fluid.layers.fc(input=out,
size=d_model,
bias_attr=False,
num_flatten_dims=2)
return proj_out
def encoder_layer(self, x):
attention_out = self.multi_head_attention(
pre_process_layer(x, self.preprocess_cmd,
self.prepostprocess_dropout), None, None,
self.d_key, self.d_value, self.d_model, self.n_head,
self.dropout_rate)
attn_output = post_process_layer(x, attention_out,
self.postprocess_cmd,
self.prepostprocess_dropout)
ffd_output = positionwise_feed_forward(
pre_process_layer(attn_output, self.preprocess_cmd,
self.prepostprocess_dropout), self.d_inner_hid,
self.d_model, self.relu_dropout)
return post_process_layer(attn_output, ffd_output,
self.postprocess_cmd,
self.prepostprocess_dropout)
def net(self, inputs, is_infer=False):
init_value_ = 0.1
hist_item_seq = self._sparse_data_var[1]
hist_cat_seq = self._sparse_data_var[2]
position_seq = self._sparse_data_var[3]
target_item = self._sparse_data_var[4]
target_cat = self._sparse_data_var[5]
target_position = self._sparse_data_var[6]
self.label = self._sparse_data_var[0]
item_emb_attr = fluid.ParamAttr(name="item_emb")
cat_emb_attr = fluid.ParamAttr(name="cat_emb")
position_emb_attr = fluid.ParamAttr(name="position_emb")
hist_item_emb = fluid.embedding(
input=hist_item_seq,
size=[self.item_count, self.item_emb_size],
param_attr=item_emb_attr,
is_sparse=self.is_sparse)
hist_cat_emb = fluid.embedding(
input=hist_cat_seq,
size=[self.cat_count, self.cat_emb_size],
param_attr=cat_emb_attr,
is_sparse=self.is_sparse)
hist_position_emb = fluid.embedding(
input=hist_cat_seq,
size=[self.position_count, self.position_emb_size],
param_attr=position_emb_attr,
is_sparse=self.is_sparse)
target_item_emb = fluid.embedding(
input=target_item,
size=[self.item_count, self.item_emb_size],
param_attr=item_emb_attr,
is_sparse=self.is_sparse)
target_cat_emb = fluid.embedding(
input=target_cat,
size=[self.cat_count, self.cat_emb_size],
param_attr=cat_emb_attr,
is_sparse=self.is_sparse)
target_position_emb = fluid.embedding(
input=target_position,
size=[self.position_count, self.position_emb_size],
param_attr=position_emb_attr,
is_sparse=self.is_sparse)
item_sequence_target = fluid.layers.reduce_sum(
fluid.layers.sequence_concat([hist_item_emb, target_item_emb]),
dim=1)
cat_sequence_target = fluid.layers.reduce_sum(
fluid.layers.sequence_concat([hist_cat_emb, target_cat_emb]),
dim=1)
position_sequence_target = fluid.layers.reduce_sum(
fluid.layers.sequence_concat(
[hist_position_emb, target_position_emb]),
dim=1)
whole_embedding_withlod = fluid.layers.concat(
[
item_sequence_target, cat_sequence_target,
position_sequence_target
],
axis=1)
pad_value = fluid.layers.assign(input=np.array(
[0.0], dtype=np.float32))
whole_embedding, _ = fluid.layers.sequence_pad(whole_embedding_withlod,
pad_value)
for _ in range(self.n_encoder_layers):
enc_output = self.encoder_layer(whole_embedding)
enc_input = enc_output
enc_output = pre_process_layer(enc_output, self.preprocess_cmd,
self.prepostprocess_dropout)
dnn_input = fluid.layers.reduce_sum(enc_output, dim=1)
for s in self.layer_sizes:
dnn_input = fluid.layers.fc(
input=dnn_input,
size=s,
act=self.act,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_ / math.sqrt(float(10)))),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
y_dnn = fluid.layers.fc(input=dnn_input, size=1, act=None)
self.predict = fluid.layers.sigmoid(y_dnn)
cost = fluid.layers.log_loss(
input=self.predict, label=fluid.layers.cast(self.label, "float32"))
avg_cost = fluid.layers.reduce_sum(cost)
self._cost = avg_cost
predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
label_int = fluid.layers.cast(self.label, 'int64')
auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
self._metrics["AUC"] = auc_var
self._metrics["BATCH_AUC"] = batch_auc_var
if is_infer:
self._infer_results["AUC"] = auc_var
......@@ -37,6 +37,7 @@
| xDeepFM | xDeepFM | [xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://dl.acm.org/doi/pdf/10.1145/3219819.3220023)(2018) |
| DIN | Deep Interest Network | [Deep Interest Network for Click-Through Rate Prediction](https://dl.acm.org/doi/pdf/10.1145/3219819.3219823)(2018) |
| DIEN | Deep Interest Evolution Network | [Deep Interest Evolution Network for Click-Through Rate Prediction](https://www.aaai.org/ojs/index.php/AAAI/article/view/4545/4423)(2019) |
| BST | transformer in user behavior sequence for rank | [Behavior Sequence Transformer for E-commerce Recommendation in Alibaba](https://arxiv.org/pdf/1905.06874v1.pdf)(2019) |
| FGCNN | Feature Generation by CNN | [Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1904.04447.pdf)(2019) |
| FIBINET | Combining Feature Importance and Bilinear feature Interaction | [《FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction》]( https://arxiv.org/pdf/1905.09433.pdf)(2019) |
| FLEN | Leveraging Field for Scalable CTR Prediction | [《FLEN: Leveraging Field for Scalable CTR Prediction》]( https://arxiv.org/pdf/1911.04690.pdf)(2019) |
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册