Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
8a9fc7c6
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8a9fc7c6
编写于
5月 06, 2020
作者:
C
chengmo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cluster tdm trainer
上级
0cc5872d
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
252 addition
and
1 deletion
+252
-1
fleet_rec/core/factory.py
fleet_rec/core/factory.py
+2
-0
fleet_rec/core/trainers/tdm_cluster_trainer.py
fleet_rec/core/trainers/tdm_cluster_trainer.py
+206
-0
fleet_rec/run.py
fleet_rec/run.py
+44
-1
未找到文件。
fleet_rec/core/factory.py
浏览文件 @
8a9fc7c6
...
@@ -35,6 +35,8 @@ def trainer_registry():
...
@@ -35,6 +35,8 @@ def trainer_registry():
trainer_abs
,
"ctr_modul_trainer.py"
)
trainer_abs
,
"ctr_modul_trainer.py"
)
trainers
[
"TDMSingleTrainer"
]
=
os
.
path
.
join
(
trainers
[
"TDMSingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_single_trainer.py"
)
trainer_abs
,
"tdm_single_trainer.py"
)
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_cluster_trainer.py"
)
trainer_registry
()
trainer_registry
()
...
...
fleet_rec/core/trainers/tdm_cluster_trainer.py
0 → 100644
浏览文件 @
8a9fc7c6
# -*- coding=utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy
import
StrategyFactory
from
paddle.fluid.incubate.fleet.base.role_maker
import
PaddleCloudRoleMaker
from
fleetrec.core.utils
import
envs
from
fleetrec.core.trainers.transpiler_trainer
import
TranspileTrainer
special_param
=
[
"TDM_Tree_Travel"
,
"TDM_Tree_Layer"
,
"TDM_Tree_Info"
]
class
TDMClusterTrainer
(
TranspileTrainer
):
def
processor_register
(
self
):
role
=
PaddleCloudRoleMaker
()
fleet
.
init
(
role
)
if
fleet
.
is_server
():
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'server_pass'
,
self
.
server
)
else
:
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'trainer_startup_pass'
,
self
.
trainer_startup
)
if
envs
.
get_platform
()
==
"LINUX"
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataset_train
)
else
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataloader_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
build_strategy
(
self
):
mode
=
envs
.
get_runtime_environ
(
"train.trainer.strategy"
)
assert
mode
in
[
"async"
,
"geo"
,
"sync"
,
"half_async"
]
strategy
=
None
if
mode
==
"async"
:
strategy
=
StrategyFactory
.
create_async_strategy
()
elif
mode
==
"geo"
:
push_num
=
envs
.
get_global_env
(
"train.strategy.mode.push_num"
,
100
)
strategy
=
StrategyFactory
.
create_geo_strategy
(
push_num
)
elif
mode
==
"sync"
:
strategy
=
StrategyFactory
.
create_sync_strategy
()
elif
mode
==
"half_async"
:
strategy
=
StrategyFactory
.
create_half_async_strategy
()
assert
strategy
is
not
None
self
.
strategy
=
strategy
return
strategy
def
init
(
self
,
context
):
self
.
model
.
train_net
()
optimizer
=
self
.
model
.
optimizer
()
strategy
=
self
.
build_strategy
()
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
)
optimizer
.
minimize
(
self
.
model
.
get_cost_op
())
if
fleet
.
is_server
():
context
[
'status'
]
=
'server_pass'
else
:
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
context
[
'status'
]
=
'trainer_startup_pass'
def
server
(
self
,
context
):
model_path
=
envs
.
get_global_env
(
"cluster.model_path"
,
""
,
namespace
)
assert
not
model_path
,
"Cluster train must has init_model for TDM"
fleet
.
init_server
(
model_path
)
fleet
.
run_server
()
context
[
'is_exit'
]
=
True
def
trainer_startup
(
self
,
context
):
namespace
=
"train.startup"
load_tree
=
envs
.
get_global_env
(
"cluster.load_tree"
,
False
,
namespace
)
self
.
tree_layer_path
=
envs
.
get_global_env
(
"cluster.tree_layer_path"
,
""
,
namespace
)
self
.
tree_travel_path
=
envs
.
get_global_env
(
"cluster.tree_travel_path"
,
""
,
namespace
)
self
.
tree_info_path
=
envs
.
get_global_env
(
"cluster.tree_info_path"
,
""
,
namespace
)
save_init_model
=
envs
.
get_global_env
(
"cluster.save_init_model"
,
False
,
namespace
)
init_model_path
=
envs
.
get_global_env
(
"cluster.init_model_path"
,
""
,
namespace
)
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
if
load_tree
:
# 将明文树结构及数据,set到组网中的Variale中
# 不使用NumpyInitialize方法是考虑到树结构相关数据size过大,有性能风险
for
param_name
in
special_param
:
param_t
=
fluid
.
global_scope
().
find_var
(
param_name
).
get_tensor
()
param_array
=
self
.
tdm_prepare
(
param_name
)
param_t
.
set
(
param_array
.
astype
(
'int32'
),
self
.
_place
)
if
save_init_model
:
logger
.
info
(
"Begin Save Init model."
)
fluid
.
io
.
save_persistables
(
executor
=
self
.
_exe
,
dirname
=
init_model_path
)
logger
.
info
(
"End Save Init model."
)
context
[
'status'
]
=
'train_pass'
def
dataloader_train
(
self
,
context
):
self
.
_exe
.
run
(
fleet
.
startup_program
)
fleet
.
init_worker
()
reader
=
self
.
_get_dataloader
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
program
=
fluid
.
compiler
.
CompiledProgram
(
fleet
.
main_program
).
with_data_parallel
(
loss_name
=
self
.
model
.
get_cost_op
().
name
,
build_strategy
=
self
.
strategy
.
get_build_strategy
(),
exec_strategy
=
self
.
strategy
.
get_execute_strategy
())
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
self
.
model
.
get_metrics
().
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
for
epoch
in
range
(
epochs
):
reader
.
start
()
batch_id
=
0
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
10
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
fleet
.
stop_worker
()
context
[
'status'
]
=
'terminal_pass'
def
dataset_train
(
self
,
context
):
self
.
_exe
.
run
(
fleet
.
startup_program
)
fleet
.
init_worker
()
dataset
=
self
.
_get_dataset
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
self
.
save
(
i
,
"train"
,
is_fleet
=
True
)
fleet
.
stop_worker
()
context
[
'status'
]
=
'terminal_pass'
def
infer
(
self
,
context
):
context
[
'status'
]
=
'terminal_pass'
def
terminal
(
self
,
context
):
for
model
in
self
.
increment_models
:
print
(
"epoch :{}, dir: {}"
.
format
(
model
[
0
],
model
[
1
]))
context
[
'is_exit'
]
=
True
fleet_rec/run.py
浏览文件 @
8a9fc7c6
...
@@ -18,6 +18,8 @@ def engine_registry():
...
@@ -18,6 +18,8 @@ def engine_registry():
cpu
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
cpu
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
cpu
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
cpu
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
cpu
[
"TRANSPILER"
][
"TDM_SINGLE"
]
=
tdm_single_engine
cpu
[
"TRANSPILER"
][
"TDM_SINGLE"
]
=
tdm_single_engine
cpu
[
"TRANSPILER"
][
"TDM_LOCAL_CLUSTER"
]
=
tdm_local_cluster_engine
cpu
[
"TRANSPILER"
][
"TDM_CLUSTER"
]
=
tdm_cluster_engine
cpu
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
cpu
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
cpu
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
cpu
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
cpu
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
cpu
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
...
@@ -124,6 +126,21 @@ def cluster_engine(args):
...
@@ -124,6 +126,21 @@ def cluster_engine(args):
return
trainer
return
trainer
def
tdm_cluster_engine
(
args
):
print
(
"launch tdm cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
cluster_envs
=
{}
cluster_envs
[
"train.trainer.trainer"
]
=
"TDMClusterTrainer"
cluster_envs
[
"train.trainer.engine"
]
=
"cluster"
cluster_envs
[
"train.trainer.device"
]
=
args
.
device
cluster_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
set_runtime_envs
(
cluster_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_mpi_engine
(
args
):
def
cluster_mpi_engine
(
args
):
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
...
@@ -163,6 +180,31 @@ def local_cluster_engine(args):
...
@@ -163,6 +180,31 @@ def local_cluster_engine(args):
return
launch
return
launch
def
tdm_local_cluster_engine
(
args
):
print
(
"launch tdm cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
from
fleetrec.core.engine.local_cluster_engine
import
LocalClusterEngine
cluster_envs
=
{}
cluster_envs
[
"server_num"
]
=
1
cluster_envs
[
"worker_num"
]
=
1
cluster_envs
[
"start_port"
]
=
36001
cluster_envs
[
"log_dir"
]
=
"logs"
cluster_envs
[
"train.trainer.trainer"
]
=
"TDMClusterTrainer"
cluster_envs
[
"train.trainer.strategy"
]
=
"async"
cluster_envs
[
"train.trainer.threads"
]
=
"2"
cluster_envs
[
"train.trainer.engine"
]
=
"local_cluster"
cluster_envs
[
"train.trainer.device"
]
=
args
.
device
cluster_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
cluster_envs
[
"CPU_NUM"
]
=
"2"
set_runtime_envs
(
cluster_envs
,
args
.
model
)
launch
=
LocalClusterEngine
(
cluster_envs
,
args
.
model
)
return
launch
def
local_mpi_engine
(
args
):
def
local_mpi_engine
(
args
):
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
from
fleetrec.core.engine.local_mpi_engine
import
LocalMPIEngine
from
fleetrec.core.engine.local_mpi_engine
import
LocalMPIEngine
...
@@ -202,7 +244,8 @@ if __name__ == "__main__":
...
@@ -202,7 +244,8 @@ if __name__ == "__main__":
parser
=
argparse
.
ArgumentParser
(
description
=
'fleet-rec run'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'fleet-rec run'
)
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
str
)
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
str
)
parser
.
add_argument
(
"-e"
,
"--engine"
,
type
=
str
,
parser
.
add_argument
(
"-e"
,
"--engine"
,
type
=
str
,
choices
=
[
"single"
,
"local_cluster"
,
"cluster"
,
"tdm_single"
])
choices
=
[
"single"
,
"local_cluster"
,
"cluster"
,
"tdm_single"
,
"tdm_local_cluster"
,
"tdm_cluster"
])
parser
.
add_argument
(
"-d"
,
"--device"
,
type
=
str
,
parser
.
add_argument
(
"-d"
,
"--device"
,
type
=
str
,
choices
=
[
"cpu"
,
"gpu"
],
default
=
"cpu"
)
choices
=
[
"cpu"
,
"gpu"
],
default
=
"cpu"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录