提交 56b07f61 编写于 作者: F frankwhzhang

merge init_slot into new model style

上级 69d53643
......@@ -134,6 +134,34 @@ class Model(object):
return self._build_optimizer(optimizer, learning_rate)
def input_data(self, is_infer=False):
sparse_slots = envs.get_global_env("sparse_slots", None,
"train.reader")
dense_slots = envs.get_global_env("dense_slots", None, "train.reader")
if sparse_slots is not None or dense_slots is not None:
sparse_slots = sparse_slots.strip().split(" ")
dense_slots = dense_slots.strip().split(" ")
dense_slots_shape = [[
int(j) for j in i.split(":")[1].strip("[]").split(",")
] for i in dense_slots]
dense_slots = [i.split(":")[0] for i in dense_slots]
self._dense_data_var = []
data_var_ = []
for i in range(len(dense_slots)):
l = fluid.layers.data(
name=dense_slots[i],
shape=dense_slots_shape[i],
dtype="float32")
data_var_.append(l)
self._dense_data_var.append(l)
self._sparse_data_var = []
for name in sparse_slots:
l = fluid.layers.data(
name=name, shape=[1], lod_level=1, dtype="int64")
data_var_.append(l)
self._sparse_data_var.append(l)
return data_var_
else:
return None
def net(self, is_infer=False):
......
......@@ -24,40 +24,33 @@ class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def input(self):
def _init_hyper_parameters(self):
self.is_distributed = True if envs.get_trainer(
) == "CtrTrainer" else False
self.sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number", None, self._namespace)
self.sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim", None, self._namespace)
self.learning_rate = envs.get_global_env(
"hyper_parameters.learning_rate", None, self._namespace)
def net(self, input, is_infer=False):
self.sparse_inputs = self._sparse_data_var[1:]
self.dense_input = self._dense_data_var[0]
self.label_input = self._sparse_data_var[0]
def net(self):
is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number", None, self._namespace)
sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim", None, self._namespace)
def embedding_layer(input):
emb = fluid.layers.embedding(
input=input,
is_sparse=True,
is_distributed=is_distributed,
size=[sparse_feature_number, sparse_feature_dim],
is_distributed=self.is_distributed,
size=[self.sparse_feature_number, self.sparse_feature_dim],
param_attr=fluid.ParamAttr(
name="SparseFeatFactors",
initializer=fluid.initializer.Uniform()), )
emb_sum = fluid.layers.sequence_pool(input=emb, pool_type='sum')
return emb_sum
def fc(input, output_size):
output = fluid.layers.fc(
input=input,
size=output_size,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1.0 / math.sqrt(input.shape[1]))))
return output
sparse_embed_seq = list(map(embedding_layer, self.sparse_inputs))
concated = fluid.layers.concat(
sparse_embed_seq + [self.dense_input], axis=1)
......@@ -67,7 +60,14 @@ class Model(ModelBase):
self._namespace)
for size in hidden_layers:
fcs.append(fc(fcs[-1], size))
output = fluid.layers.fc(
input=fcs[-1],
size=size,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1.0 / math.sqrt(fcs[-1].shape[1]))))
fcs.append(output)
predict = fluid.layers.fc(
input=fcs[-1],
......@@ -78,13 +78,10 @@ class Model(ModelBase):
self.predict = predict
def avg_loss(self):
cost = fluid.layers.cross_entropy(
input=self.predict, label=self.label_input)
avg_cost = fluid.layers.reduce_mean(cost)
self._cost = avg_cost
def metrics(self):
auc, batch_auc, _ = fluid.layers.auc(input=self.predict,
label=self.label_input,
num_thresholds=2**12,
......@@ -92,20 +89,9 @@ class Model(ModelBase):
self._metrics["AUC"] = auc
self._metrics["BATCH_AUC"] = batch_auc
def train_net(self):
self._init_slots()
self.input()
self.net()
self.avg_loss()
self.metrics()
def optimizer(self):
learning_rate = envs.get_global_env("hyper_parameters.learning_rate",
None, self._namespace)
optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
optimizer = fluid.optimizer.Adam(self.learning_rate, lazy_mode=True)
return optimizer
def infer_net(self):
self._init_slots()
self.input()
self.net()
pass
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册