Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
13e62b7f
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
13e62b7f
编写于
5月 18, 2020
作者:
X
xujiaqi01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
726c61ca
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
224 addition
and
217 deletion
+224
-217
models/contentunderstanding/classification/config.yaml
models/contentunderstanding/classification/config.yaml
+1
-1
models/contentunderstanding/classification/model.py
models/contentunderstanding/classification/model.py
+8
-5
models/contentunderstanding/classification/reader.py
models/contentunderstanding/classification/reader.py
+4
-0
models/contentunderstanding/classification/train_data/part-0
models/contentunderstanding/classification/train_data/part-0
+208
-208
models/contentunderstanding/readme.md
models/contentunderstanding/readme.md
+2
-2
models/contentunderstanding/tagspace/config.yaml
models/contentunderstanding/tagspace/config.yaml
+1
-1
未找到文件。
models/contentunderstanding/classification/config.yaml
浏览文件 @
13e62b7f
...
@@ -18,7 +18,7 @@ train:
...
@@ -18,7 +18,7 @@ train:
strategy
:
"
async"
strategy
:
"
async"
epochs
:
10
epochs
:
10
workspace
:
"
paddlerec.models.contentunderstandin.classification"
workspace
:
"
paddlerec.models.contentunderstandin
g
.classification"
reader
:
reader
:
batch_size
:
5
batch_size
:
5
...
...
models/contentunderstanding/classification/model.py
浏览文件 @
13e62b7f
...
@@ -26,9 +26,12 @@ class Model(ModelBase):
...
@@ -26,9 +26,12 @@ class Model(ModelBase):
data
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
None
,
self
.
max_len
],
dtype
=
'int64'
)
data
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
None
,
self
.
max_len
],
dtype
=
'int64'
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
seq_len
=
fluid
.
data
(
name
=
"seq_len"
,
shape
=
[
None
],
dtype
=
'int64'
)
seq_len
=
fluid
.
data
(
name
=
"seq_len"
,
shape
=
[
None
],
dtype
=
'int64'
)
self
.
_data_var
=
[
data
,
label
,
seq_len
]
# embedding layer
# embedding layer
emb
=
fluid
.
embedding
(
input
=
data
,
size
=
[
self
.
dict_dim
,
self
.
emb_dim
])
emb
=
fluid
.
embedding
(
input
=
data
,
size
=
[
self
.
dict_dim
,
self
.
emb_dim
])
emb
=
fluid
.
layers
.
sequence_unpad
(
emb
,
length
=
se
lf
.
se
q_len
)
emb
=
fluid
.
layers
.
sequence_unpad
(
emb
,
length
=
seq_len
)
# convolution layer
# convolution layer
conv
=
fluid
.
nets
.
sequence_conv_pool
(
conv
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
input
=
emb
,
...
@@ -38,7 +41,7 @@ class Model(ModelBase):
...
@@ -38,7 +41,7 @@ class Model(ModelBase):
pool_type
=
"max"
)
pool_type
=
"max"
)
# full connect layer
# full connect layer
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv
],
size
=
hid_dim
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv
],
size
=
self
.
hid_dim
)
# softmax layer
# softmax layer
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
self
.
class_dim
,
act
=
"softmax"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
self
.
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
...
@@ -46,18 +49,18 @@ class Model(ModelBase):
...
@@ -46,18 +49,18 @@ class Model(ModelBase):
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
self
.
cost
=
avg_cost
self
.
cost
=
avg_cost
self
.
metrics
[
"acc"
]
=
cos_pos
self
.
_metrics
[
"acc"
]
=
acc
def
get_cost_op
(
self
):
def
get_cost_op
(
self
):
return
self
.
cost
return
self
.
cost
def
get_metrics
(
self
):
def
get_metrics
(
self
):
return
self
.
metrics
return
self
.
_
metrics
def
optimizer
(
self
):
def
optimizer
(
self
):
learning_rate
=
0.01
learning_rate
=
0.01
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
learning_rate
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
learning_rate
)
return
sgd_optimizer
return
sgd_optimizer
def
infer_net
(
self
,
parameter_list
):
def
infer_net
(
self
):
self
.
train_net
()
self
.
train_net
()
models/contentunderstanding/classification/reader.py
浏览文件 @
13e62b7f
...
@@ -30,5 +30,9 @@ class TrainReader(Reader):
...
@@ -30,5 +30,9 @@ class TrainReader(Reader):
if
data
is
None
:
if
data
is
None
:
yield
None
yield
None
return
return
data
=
[
int
(
i
)
for
i
in
data
]
label
=
[
int
(
i
)
for
i
in
label
]
seq_len
=
[
int
(
i
)
for
i
in
seq_len
]
print
>>
sys
.
stderr
,
str
([(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)])
yield
[(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)]
yield
[(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)]
return
data_iter
return
data_iter
models/contentunderstanding/classification/train_data/part-0
浏览文件 @
13e62b7f
12 27 13 0 25 52 89 20 39 4 9 1
12 27 13 0 25 52 89 20 39 4 9 1
78 10 61 58 29 79 85 16 46 41 9 1
78 10 61 58 29 79 85 16 46 41 9 1
81 77 44 4 5 57 43 97 42 89 6 0
81 77 44 4 5 57 43 97 42 89 6 0
7 77 86 3 98 89 56 24
7 59 9 1
7 77 86 3 98 89 56 24
7 59 9 1
65 89 99 27 65 98 16 89 42 0 3 0
65 89 99 27 65 98 16 89 42 0 3 0
66 14 48 38 66 5 56 89 98 19 4 1
66 14 48 38 66 5 56 89 98 19 4 1
78 7 10 20 77 16 37 43 59 23 6 1
78 7 10 20 77 16 37 43 59 23 6 1
...
@@ -24,32 +24,32 @@
...
@@ -24,32 +24,32 @@
97 69 76 47 80 62 23 30 87 22 7 1
97 69 76 47 80 62 23 30 87 22 7 1
42 56 25 47 42 18 80 53 15 57 7 0
42 56 25 47 42 18 80 53 15 57 7 0
34 73 75 88 61 79 40 74 87 87 6 1
34 73 75 88 61 79 40 74 87 87 6 1
7 91
9 24 42 60 76 31 10 13 4 0
7 91
9 24 42 60 76 31 10 13 4 0
21 1 46 59 61 54 99 54 89 55 5 1
21 1 46 59 61 54 99 54 89 55 5 1
67 21 1 29 88 5 3 85 39 22 5 1
67 21 1 29 88 5 3 85 39 22 5 1
90 99 7 8 17 77 73 3 32 10 5 0
90 99 7 8 17 77 73 3 32 10 5 0
30 44 26 32 37 74 90 71 42 29 9 1
30 44 26 32 37 74 90 71 42 29 9 1
79 68 3 24 21 37 35 3 76 23 6 1
79 68 3 24 21 37 35 3 76 23 6 1
3 66 7 4
2 88 94 64 47 81 6 1
3 66 7 4
2 88 94 64 47 81 6 1
10 48 16 49 96 93 61 97 84 39 3 1
10 48 16 49 96 93 61 97 84 39 3 1
73 28 67 59 89 92 17 24 52 71 3 1
73 28 67 59 89 92 17 24 52 71 3 1
98 4 35 62 91 2 78 51 72 93 1 1
98 4 35 62 91 2 78 51 72 93 1 1
37 42 96 10 48 49 84 45 59 47 5 1
37 42 96 10 48 49 84 45 59 47 5 1
13 24 7 49 63 78 29 75 45 92 7 1
13 24 7 49 63 78 29 75 45 92 7 1
1
6 95 23 38 34 85 94 33 47 6 1
1
6 95 23 38 34 85 94 33 47 6 1
99 63 65 39 72 73 91 20 16 45 9 0
99 63 65 39 72 73 91 20 16 45 9 0
35 8 81 24 62 0 95 0 52 46 4 1
35 8 81 24 62 0 95 0 52 46 4 1
58 66 88 42 86 94 91 8 18 92 7 0
58 66 88 42 86 94 91 8 18 92 7 0
12 62 56 43 99 31 63 80 11 7 4 1
12 62 56 43 99 31 63 80 11 7 4 1
22 36 1 39 69 20 56 75 17 15 7 0
22 36 1 39 69 20 56 75 17 15 7 0
25 97 62 50 99 98 32 2 98 75 7 1
25 97 62 50 99 98 32 2 98 75 7 1
7 59 98 68 62 19 28 28 60 27 7 0
7 59 98 68 62 19 28 28 60 27 7 0
39 63 43 45 43 11 40 81 4 25 6 0
39 63 43 45 43 11 40 81 4 25 6 0
81 95 27 84 71 45 87 65 40 50 1 0
81 95 27 84 71 45 87 65 40 50 1 0
82 21 69 55 71 92 52 65 90 16 3 0
82 21 69 55 71 92 52 65 90 16 3 0
24 6 5 22 36 34 66 71 3 52 2 0
24 6 5 22 36 34 66 71 3 52 2 0
5 14 66 71 49 10 52 81 32 14 1 0
5 14 66 71 49 10 52 81 32 14 1 0
8 94 52 23 60 27 43 19 89 91 9 0
8 94 52 23 60 27 43 19 89 91 9 0
26 14 36 37 28 94 46 96 11 80 8 1
26 14 36 37 28 94 46 96 11 80 8 1
89 19 77 66 48 75 62 58 90 81 8 1
89 19 77 66 48 75 62 58 90 81 8 1
25 43 95 21 25 81 39 79 9 74 9 0
25 43 95 21 25 81 39 79 9 74 9 0
...
@@ -75,9 +75,9 @@
...
@@ -75,9 +75,9 @@
70 29 79 29 44 56 33 27 25 4 3 1
70 29 79 29 44 56 33 27 25 4 3 1
44 20 87 67 65 41 93 37 99 78 1 1
44 20 87 67 65 41 93 37 99 78 1 1
93 57 87 11 33 40 21 3 47 87 9 1
93 57 87 11 33 40 21 3 47 87 9 1
8
3 24 49 99 48 40 22 99 41 2 0
8
3 24 49 99 48 40 22 99 41 2 0
19 90 9 83 93 22 36 96 44 73 7 1
19 90 9 83 93 22 36 96 44 73 7 1
4 73
2 88 79 90 32 48 45 12 5 0
4 73
2 88 79 90 32 48 45 12 5 0
24 58 34 67 85 62 84 48 14 79 5 1
24 58 34 67 85 62 84 48 14 79 5 1
54 69 19 18 59 78 84 48 61 46 4 0
54 69 19 18 59 78 84 48 61 46 4 0
72 69 95 26 30 74 49 30 95 61 8 0
72 69 95 26 30 74 49 30 95 61 8 0
...
@@ -117,7 +117,7 @@
...
@@ -117,7 +117,7 @@
23 27 98 73 25 7 89 48 7 44 4 1
23 27 98 73 25 7 89 48 7 44 4 1
86 98 68 1 74 46 15 92 59 25 9 1
86 98 68 1 74 46 15 92 59 25 9 1
95 86 72 13 33 60 62 83 96 84 1 0
95 86 72 13 33 60 62 83 96 84 1 0
9 58 37 50 57 16 78
0 21 80 2 0
9 58 37 50 57 16 78
0 21 80 2 0
82 94 74 42 3 60 61 93 34 22 3 1
82 94 74 42 3 60 61 93 34 22 3 1
16 97 97 14 47 50 90 35 9 58 5 0
16 97 97 14 47 50 90 35 9 58 5 0
70 94 82 42 85 88 59 58 6 68 9 0
70 94 82 42 85 88 59 58 6 68 9 0
...
@@ -125,7 +125,7 @@
...
@@ -125,7 +125,7 @@
22 23 7 82 39 28 96 92 23 40 5 1
22 23 7 82 39 28 96 92 23 40 5 1
40 31 72 94 20 81 89 4 42 1 5 0
40 31 72 94 20 81 89 4 42 1 5 0
57 63 71 41 28 2 39 67 90 54 6 0
57 63 71 41 28 2 39 67 90 54 6 0
9 74
4 41 11 31 15 21 44 32 6 1
9 74
4 41 11 31 15 21 44 32 6 1
31 28 66 66 61 78 72 80 82 88 3 1
31 28 66 66 61 78 72 80 82 88 3 1
79 18 1 59 35 62 0 72 78 97 7 0
79 18 1 59 35 62 0 72 78 97 7 0
14 19 30 63 38 37 12 15 54 15 6 1
14 19 30 63 38 37 12 15 54 15 6 1
...
@@ -135,7 +135,7 @@
...
@@ -135,7 +135,7 @@
51 55 9 9 88 59 21 66 87 12 1 1
51 55 9 9 88 59 21 66 87 12 1 1
90 22 38 66 12 9 30 48 55 85 1 1
90 22 38 66 12 9 30 48 55 85 1 1
39 23 82 29 57 76 79 56 3 19 2 0
39 23 82 29 57 76 79 56 3 19 2 0
7 72 76 15 90 23 40 40 33 39 4 1
7 72 76 15 90 23 40 40 33 39 4 1
60 64 34 11 18 18 38 39 53 37 1 1
60 64 34 11 18 18 38 39 53 37 1 1
85 72 51 47 83 90 32 96 78 23 9 1
85 72 51 47 83 90 32 96 78 23 9 1
85 51 96 31 83 70 57 65 15 0 6 0
85 51 96 31 83 70 57 65 15 0 6 0
...
@@ -146,10 +146,10 @@
...
@@ -146,10 +146,10 @@
34 19 68 93 11 9 14 87 22 70 9 0
34 19 68 93 11 9 14 87 22 70 9 0
63 77 27 20 20 37 65 51 29 29 9 1
63 77 27 20 20 37 65 51 29 29 9 1
22 79 98 57 56 97 43 49 4 80 4 1
22 79 98 57 56 97 43 49 4 80 4 1
6 4 35 54 4 36
1 79 85 35 6 0
6 4 35 54 4 36
1 79 85 35 6 0
12 55 68 61 91 43 49 5 93 27 8 0
12 55 68 61 91 43 49 5 93 27 8 0
64 22 69 16 63 20 28 60 13 35 7 1
64 22 69 16 63 20 28 60 13 35 7 1
9 19 60 89 62 29 47 33
6 13 4 0
9 19 60 89 62 29 47 33
6 13 4 0
14 15 39 86 47 75 7 70 57 60 6 1
14 15 39 86 47 75 7 70 57 60 6 1
90 63 12 43 28 46 39 97 83 42 6 0
90 63 12 43 28 46 39 97 83 42 6 0
49 3 3 64 59 46 30 13 61 10 2 0
49 3 3 64 59 46 30 13 61 10 2 0
...
@@ -160,7 +160,7 @@
...
@@ -160,7 +160,7 @@
88 57 22 64 93 66 20 90 78 2 7 1
88 57 22 64 93 66 20 90 78 2 7 1
90 86 41 28 14 25 86 73 7 21 4 0
90 86 41 28 14 25 86 73 7 21 4 0
63 91 0 29 2 78 86 76 9 20 4 1
63 91 0 29 2 78 86 76 9 20 4 1
3 57 91 37 21 85 80 99 18 79 1 1
3 57 91 37 21 85 80 99 18 79 1 1
69 95 36 6 85 47 83 83 61 52 4 0
69 95 36 6 85 47 83 83 61 52 4 0
72 4 34 16 59 78 56 70 27 44 9 1
72 4 34 16 59 78 56 70 27 44 9 1
58 42 6 53 21 7 83 38 86 66 5 0
58 42 6 53 21 7 83 38 86 66 5 0
...
@@ -179,17 +179,17 @@
...
@@ -179,17 +179,17 @@
50 66 99 67 76 25 43 12 24 67 9 0
50 66 99 67 76 25 43 12 24 67 9 0
74 56 61 97 23 63 22 63 6 83 2 1
74 56 61 97 23 63 22 63 6 83 2 1
10 96 13 49 43 20 58 19 99 58 7 1
10 96 13 49 43 20 58 19 99 58 7 1
2 95 31
4 99 91 27 90 85 32 3 0
2 95 31
4 99 91 27 90 85 32 3 0
41 23 20 71 41 75 75 35 16 12 3 1
41 23 20 71 41 75 75 35 16 12 3 1
21 33 87 57 19 27 94 36 80 10 6 0
21 33 87 57 19 27 94 36 80 10 6 0
8 0 25 74 14 61 86
8 42 82 9 0
8 0 25 74 14 61 86
8 42 82 9 0
23 33 91 19 84 99 95 92 29 31 8 0
23 33 91 19 84 99 95 92 29 31 8 0
94 94 5 6 98 23 37 65 14 25 6 1
94 94 5 6 98 23 37 65 14 25 6 1
42 16 39 32 2 20 86 81 90 91 8 0
42 16 39 32 2 20 86 81 90 91 8 0
72 39 20 63 88 52 65 81 77 96 4 0
72 39 20 63 88 52 65 81 77 96 4 0
48 73 65 75 89 36 75 36 11 35 8 0
48 73 65 75 89 36 75 36 11 35 8 0
79 74 3 29 63 20 76 46 8 82 5 0
79 74 3 29 63 20 76 46 8 82 5 0
7 46 38 77 79 92 71 98 30 35 6 0
7 46 38 77 79 92 71 98 30 35 6 0
44 69 93 31 22 68 91 70 32 86 5 0
44 69 93 31 22 68 91 70 32 86 5 0
45 38 77 87 64 44 69 19 28 82 9 0
45 38 77 87 64 44 69 19 28 82 9 0
93 63 92 84 22 44 51 94 4 99 9 0
93 63 92 84 22 44 51 94 4 99 9 0
...
@@ -202,27 +202,27 @@
...
@@ -202,27 +202,27 @@
97 12 87 82 6 18 57 49 49 58 1 1
97 12 87 82 6 18 57 49 49 58 1 1
70 79 55 86 29 88 55 39 17 74 5 1
70 79 55 86 29 88 55 39 17 74 5 1
65 51 45 62 54 17 59 12 29 79 5 0
65 51 45 62 54 17 59 12 29 79 5 0
5 63 82 51 54 97 54 36 57 46 3 0
5 63 82 51 54 97 54 36 57 46 3 0
74 77 52 10 12 9 34 95 2 0 5 0
74 77 52 10 12 9 34 95 2 0 5 0
50 20 22 89 50 70 55 98 80 50 1 0
50 20 22 89 50 70 55 98 80 50 1 0
61 80 7 3 78 36 44 37 90 18 9 0
61 80 7 3 78 36 44 37 90 18 9 0
81 13 55 57 88 81 66 55 18 34 2 1
81 13 55 57 88 81 66 55 18 34 2 1
52 30 54 70 28 56 48 82 67 20 8 1
52 30 54 70 28 56 48 82 67 20 8 1
0 41 15 63 27 90 12 16 56 79 3 0
0 41 15 63 27 90 12 16 56 79 3 0
69 89 54 1 93 10 15 2 25 59 8 0
69 89 54 1 93 10 15 2 25 59 8 0
74 99 17 93 96 82 38 77 98 85 4 0
74 99 17 93 96 82 38 77 98 85 4 0
8 59 17 92 60 21 59 76 55 73 2 1
8 59 17 92 60 21 59 76 55 73 2 1
53 56 79 19 29 94 86 96 62 39 3 1
53 56 79 19 29 94 86 96 62 39 3 1
23 44 25 63 41 94 65 10 8 40 9 1
23 44 25 63 41 94 65 10 8 40 9 1
7 18 80 43 20 70 14 59 72 17 9 0
7 18 80 43 20 70 14 59 72 17 9 0
84 97 79 14 37 64 23 68 8 24 2 0
84 97 79 14 37 64 23 68 8 24 2 0
63 94 98 77 8 62 10 77 63 56 4 0
63 94 98 77 8 62 10 77 63 56 4 0
8 63 74 34 49 22 52 54 44 93 3 0
8 63 74 34 49 22 52 54 44 93 3 0
94 48 92 58 82 48 53 34 96 25 2 0
94 48 92 58 82 48 53 34 96 25 2 0
33 15 3 95 48 93 9 69 44 77 7 1
33 15 3 95 48 93 9 69 44 77 7 1
69 72 80 77 64 24 52 21 36 49 2 0
69 72 80 77 64 24 52 21 36 49 2 0
59 34 54 66 60 19 76 79 16 70 5 1
59 34 54 66 60 19 76 79 16 70 5 1
8 83
9 91 67 79 31 20 31 88 2 0
8 83
9 91 67 79 31 20 31 88 2 0
64 95 46 95 78 63 4 60 66 63 7 1
64 95 46 95 78 63 4 60 66 63 7 1
10 39 78 45 36 4 89 94 68 75 7 0
10 39 78 45 36 4 89 94 68 75 7 0
81 52 70 11 48 15 40 63 29 14 8 1
81 52 70 11 48 15 40 63 29 14 8 1
...
@@ -231,8 +231,8 @@
...
@@ -231,8 +231,8 @@
71 50 79 54 17 58 30 16 17 99 1 1
71 50 79 54 17 58 30 16 17 99 1 1
74 79 74 61 61 36 28 39 89 36 6 0
74 79 74 61 61 36 28 39 89 36 6 0
53 45 45 23 51 32 93 26 10 8 3 0
53 45 45 23 51 32 93 26 10 8 3 0
1 97 6 67 88 20 41 63 49
6 8 0
1 97 6 67 88 20 41 63 49
6 8 0
3 64 41 19 41 80 75 71 69 90 8 0
3 64 41 19 41 80 75 71 69 90 8 0
31 90 38 93 52 0 38 86 41 68 9 1
31 90 38 93 52 0 38 86 41 68 9 1
50 94 53 9 73 59 94 7 24 57 3 0
50 94 53 9 73 59 94 7 24 57 3 0
87 11 4 62 96 7 0 59 46 11 6 1
87 11 4 62 96 7 0 59 46 11 6 1
...
@@ -272,14 +272,14 @@
...
@@ -272,14 +272,14 @@
70 40 38 47 5 38 83 70 37 90 2 0
70 40 38 47 5 38 83 70 37 90 2 0
42 21 62 27 43 47 82 80 88 49 4 0
42 21 62 27 43 47 82 80 88 49 4 0
68 68 67 12 38 13 32 30 93 27 3 1
68 68 67 12 38 13 32 30 93 27 3 1
5 44 98 28
5 81 20 56 10 34 9 1
5 44 98 28
5 81 20 56 10 34 9 1
40 46 11 33 73 62 68 70 66 85 4 0
40 46 11 33 73 62 68 70 66 85 4 0
9 46 11 84
6 31 18 89 66 32 1 1
9 46 11 84
6 31 18 89 66 32 1 1
6 78 44 98 77 29 69 39 62 78 1 0
6 78 44 98 77 29 69 39 62 78 1 0
47 90 18 0 3 8 12 20 51 75 4 1
47 90 18 0 3 8 12 20 51 75 4 1
21 29 74 19 12 29 41 22 63 47 8 1
21 29 74 19 12 29 41 22 63 47 8 1
22 59 64 62 18 89 19 92 87 8 8 0
22 59 64 62 18 89 19 92 87 8 8 0
6 21 24 58 14 53 18 93 62 15 8 0
6 21 24 58 14 53 18 93 62 15 8 0
20 33 88 25 37 52 1 72 74 11 2 0
20 33 88 25 37 52 1 72 74 11 2 0
90 49 28 53 28 80 22 81 0 46 9 0
90 49 28 53 28 80 22 81 0 46 9 0
87 31 51 27 15 31 68 93 5 4 7 1
87 31 51 27 15 31 68 93 5 4 7 1
...
@@ -314,7 +314,7 @@
...
@@ -314,7 +314,7 @@
65 74 40 2 8 40 18 57 30 38 1 1
65 74 40 2 8 40 18 57 30 38 1 1
76 44 64 6 10 32 84 70 74 24 1 1
76 44 64 6 10 32 84 70 74 24 1 1
14 29 59 34 27 8 0 37 27 68 3 0
14 29 59 34 27 8 0 37 27 68 3 0
6 47
5 77 15 41 93 49 59 83 4 1
6 47
5 77 15 41 93 49 59 83 4 1
39 88 43 89 32 98 82 0 5 12 9 0
39 88 43 89 32 98 82 0 5 12 9 0
78 79 30 26 58 6 9 58 37 65 8 1
78 79 30 26 58 6 9 58 37 65 8 1
25 28 66 41 70 87 76 62 29 39 7 1
25 28 66 41 70 87 76 62 29 39 7 1
models/contentunderstanding/readme.md
浏览文件 @
13e62b7f
...
@@ -71,13 +71,13 @@ python text2paddle.py raw_big_train_data/ raw_big_test_data/ train_big_data test
...
@@ -71,13 +71,13 @@ python text2paddle.py raw_big_train_data/ raw_big_test_data/ train_big_data test
### 训练
### 训练
```
```
python -m paddlerec.run -m paddlerec.models.
rank.dn
n -d cpu -e single
python -m paddlerec.run -m paddlerec.models.
contentunderstanding.classificatio
n -d cpu -e single
```
```
### 预测
### 预测
```
```
python -m paddlerec.run -m paddlerec.models.
rank.dn
n -d cpu -e single
python -m paddlerec.run -m paddlerec.models.
contentunderstanding.classificatio
n -d cpu -e single
```
```
## 效果对比
## 效果对比
...
...
models/contentunderstanding/tagspace/config.yaml
浏览文件 @
13e62b7f
...
@@ -18,7 +18,7 @@ train:
...
@@ -18,7 +18,7 @@ train:
strategy
:
"
async"
strategy
:
"
async"
epochs
:
10
epochs
:
10
workspace
:
"
paddlerec.models.
rank
.tagspace"
workspace
:
"
paddlerec.models.
contentunderstanding
.tagspace"
reader
:
reader
:
batch_size
:
5
batch_size
:
5
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录