Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
12c654fe
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12c654fe
编写于
5月 06, 2020
作者:
C
chengmo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tdm & trainer & engine
上级
7eaa453b
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
861 addition
and
11 deletion
+861
-11
fleet_rec/core/model.py
fleet_rec/core/model.py
+19
-7
fleet_rec/core/trainer.py
fleet_rec/core/trainer.py
+2
-1
fleet_rec/core/trainers/single_trainer.py
fleet_rec/core/trainers/single_trainer.py
+4
-0
fleet_rec/core/trainers/tdm_trainer.py
fleet_rec/core/trainers/tdm_trainer.py
+228
-0
fleet_rec/run.py
fleet_rec/run.py
+22
-3
models/recall/tdm/config.yaml
models/recall/tdm/config.yaml
+74
-0
models/recall/tdm/model.py
models/recall/tdm/model.py
+471
-0
models/recall/tdm/tdm_reader.py
models/recall/tdm/tdm_reader.py
+41
-0
未找到文件。
fleet_rec/core/model.py
浏览文件 @
12c654fe
...
...
@@ -34,6 +34,12 @@ class Model(object):
"""
return
self
.
_metrics
def
custom_preprocess
(
self
):
"""
do something after exe.run(stratup_program) and before run()
"""
pass
def
get_fetch_period
(
self
):
return
self
.
_fetch_interval
...
...
@@ -41,24 +47,30 @@ class Model(object):
name
=
name
.
upper
()
optimizers
=
[
"SGD"
,
"ADAM"
,
"ADAGRAD"
]
if
name
not
in
optimizers
:
raise
ValueError
(
"configured optimizer can only supported SGD/Adam/Adagrad"
)
raise
ValueError
(
"configured optimizer can only supported SGD/Adam/Adagrad"
)
if
name
==
"SGD"
:
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
0.0001
,
self
.
_namespace
)
optimizer_i
=
fluid
.
optimizer
.
SGD
(
lr
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
reg
))
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
0.0001
,
self
.
_namespace
)
optimizer_i
=
fluid
.
optimizer
.
SGD
(
lr
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
reg
))
elif
name
==
"ADAM"
:
optimizer_i
=
fluid
.
optimizer
.
Adam
(
lr
,
lazy_mode
=
True
)
elif
name
==
"ADAGRAD"
:
optimizer_i
=
fluid
.
optimizer
.
Adagrad
(
lr
)
else
:
raise
ValueError
(
"configured optimizer can only supported SGD/Adam/Adagrad"
)
raise
ValueError
(
"configured optimizer can only supported SGD/Adam/Adagrad"
)
return
optimizer_i
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
self
.
_namespace
)
print
(
">>>>>>>>>>>.learnig rate: %s"
%
learning_rate
)
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
self
.
_namespace
)
print
(
">>>>>>>>>>>.learnig rate: %s"
%
learning_rate
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
@
abc
.
abstractmethod
...
...
fleet_rec/core/trainer.py
浏览文件 @
12c654fe
...
...
@@ -95,5 +95,6 @@ def user_define_engine(engine_yaml):
train_dirname
=
os
.
path
.
dirname
(
train_location
)
base_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
train_location
))[
0
]
sys
.
path
.
append
(
train_dirname
)
trainer_class
=
envs
.
lazy_instance_by_fliename
(
base_name
,
"UserDefineTraining"
)
trainer_class
=
envs
.
lazy_instance_by_fliename
(
base_name
,
"UserDefineTraining"
)
return
trainer_class
fleet_rec/core/trainers/single_trainer.py
浏览文件 @
12c654fe
...
...
@@ -59,6 +59,8 @@ class SingleTrainer(TranspileTrainer):
def
dataloader_train
(
self
,
context
):
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
self
.
model
.
custom_preprocess
()
reader
=
self
.
_get_dataloader
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
...
...
@@ -101,6 +103,8 @@ class SingleTrainer(TranspileTrainer):
def
dataset_train
(
self
,
context
):
# run startup program at once
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
self
.
model
.
custom_preprocess
()
dataset
=
self
.
_get_dataset
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
...
...
fleet_rec/core/trainers/tdm_trainer.py
0 → 100644
浏览文件 @
12c654fe
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
logging
import
paddle.fluid
as
fluid
from
fleetrec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
fleetrec.core.trainers.single_trainer
import
SingleTrainer
from
fleetrec.core.utils
import
envs
import
numpy
as
np
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
TdmSingleTrainer
(
SingleTrainer
):
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
if
envs
.
get_platform
()
==
"LINUX"
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataset_train
)
else
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataloader_train
)
self
.
regist_context_processor
(
'infer_pass'
,
self
.
infer
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
init
(
self
,
context
):
self
.
model
.
train_net
()
optimizer
=
self
.
model
.
optimizer
()
optimizer
.
minimize
((
self
.
model
.
get_cost_op
()))
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
if
metrics
:
self
.
fetch_vars
=
metrics
.
values
()
self
.
fetch_alias
=
metrics
.
keys
()
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
namespace
=
"train.startup"
load_persistables
=
envs
.
get_global_env
(
"single.load_persistables"
,
False
,
namespace
)
persistables_model_path
=
envs
.
get_global_env
(
"single.persistables_model_path"
,
""
,
namespace
)
load_tree
=
envs
.
get_global_env
(
"single.load_tree"
,
False
,
namespace
)
self
.
tree_layer_path
=
envs
.
get_global_env
(
"single.tree_layer_path"
,
""
,
namespace
)
self
.
tree_travel_path
=
envs
.
get_global_env
(
"single.tree_travel_path"
,
""
,
namespace
)
self
.
tree_info_path
=
envs
.
get_global_env
(
"single.tree_info_path"
,
""
,
namespace
)
self
.
tree_emb_path
=
envs
.
get_global_env
(
"single.tree_emb_path"
,
""
,
namespace
)
save_init_model
=
envs
.
get_global_env
(
"single.save_init_model"
,
False
,
namespace
)
init_model_path
=
envs
.
get_global_env
(
"single.init_model_path"
,
""
,
namespace
)
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
if
load_persistables
:
# 从paddle二进制模型加载参数
fluid
.
io
.
load_persistables
(
executor
=
self
.
_exe
,
dirname
=
persistables_model_path
,
main_program
=
fluid
.
default_main_program
())
logger
.
info
(
"Load persistables from
\"
{}
\"
"
.
format
(
persistables_model_path
))
if
load_tree
:
# 将明文树结构及数据,set到组网中的Variale中
# 不使用NumpyInitialize方法是考虑到树结构相关数据size过大,有性能风险
for
param_name
in
Numpy_model
:
param_t
=
fluid
.
global_scope
().
find_var
(
param_name
).
get_tensor
()
param_array
=
self
.
tdm_prepare
(
param_name
)
if
param_name
==
'TDM_Tree_Emb'
:
param_t
.
set
(
param_array
.
astype
(
'float32'
),
place
)
else
:
param_t
.
set
(
param_array
.
astype
(
'int32'
),
place
)
if
save_init_model
:
logger
.
info
(
"Begin Save Init model."
)
fluid
.
io
.
save_persistables
(
executor
=
self
.
_exe
,
dirname
=
init_model_path
)
logger
.
info
(
"End Save Init model."
)
context
[
'status'
]
=
'train_pass'
def
dataloader_train
(
self
,
context
):
reader
=
self
.
_get_dataloader
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
program
=
fluid
.
compiler
.
CompiledProgram
(
fluid
.
default_main_program
()).
with_data_parallel
(
loss_name
=
self
.
model
.
get_cost_op
().
name
)
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
self
.
model
.
get_metrics
().
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
for
epoch
in
range
(
epochs
):
reader
.
start
()
batch_id
=
0
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
10
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
context
[
'status'
]
=
'infer_pass'
def
dataset_train
(
self
,
context
):
dataset
=
self
.
_get_dataset
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
infer
(
self
,
context
):
context
[
'status'
]
=
'terminal_pass'
def
terminal
(
self
,
context
):
for
model
in
self
.
increment_models
:
print
(
"epoch :{}, dir: {}"
.
format
(
model
[
0
],
model
[
1
]))
context
[
'is_exit'
]
=
True
def
tdm_prepare
(
self
,
param_name
):
if
param_name
==
"TDM_Tree_Travel"
:
travel_array
=
self
.
tdm_travel_prepare
()
return
travel_array
elif
param_name
==
"TDM_Tree_Layer"
:
layer_array
,
_
=
self
.
tdm_layer_prepare
()
return
layer_array
elif
param_name
==
"TDM_Tree_Info"
:
info_array
=
self
.
tdm_info_prepare
()
return
info_array
elif
param_name
==
"TDM_Tree_Emb"
:
emb_array
=
self
.
tdm_emb_prepare
()
return
emb_array
else
:
raise
" {} is not a special tdm param name"
.
format
(
param_name
)
def
tdm_travel_prepare
(
self
):
"""load tdm tree param from npy/list file"""
travel_array
=
np
.
load
(
self
.
tree_travel_path
)
logger
.
info
(
"TDM Tree leaf node nums: {}"
.
format
(
travel_array
.
shape
[
0
]))
return
travel_array
def
tdm_emb_prepare
(
self
):
"""load tdm tree param from npy/list file"""
emb_array
=
np
.
load
(
self
.
tree_emb_path
)
logger
.
info
(
"TDM Tree node nums from emb: {}"
.
format
(
emb_array
.
shape
[
0
]))
return
emb_array
def
tdm_layer_prepare
(
self
):
"""load tdm tree param from npy/list file"""
layer_list
=
[]
layer_list_flat
=
[]
with
open
(
self
.
tree_layer_path
,
'r'
)
as
fin
:
for
line
in
fin
.
readlines
():
l
=
[]
layer
=
(
line
.
split
(
'
\n
'
))[
0
].
split
(
','
)
for
node
in
layer
:
if
node
:
layer_list_flat
.
append
(
node
)
l
.
append
(
node
)
layer_list
.
append
(
l
)
layer_array
=
np
.
array
(
layer_list_flat
)
layer_array
=
layer_array
.
reshape
([
-
1
,
1
])
logger
.
info
(
"TDM Tree max layer: {}"
.
format
(
len
(
layer_list
)))
logger
.
info
(
"TDM Tree layer_node_num_list: {}"
.
format
(
[
len
(
i
)
for
i
in
layer_list
]))
return
layer_array
,
layer_list
def
tdm_info_prepare
(
self
):
"""load tdm tree param from list file"""
info_array
=
np
.
load
(
self
.
tree_info_path
)
return
info_array
fleet_rec/run.py
浏览文件 @
12c654fe
...
...
@@ -17,6 +17,7 @@ def engine_registry():
cpu
[
"TRANSPILER"
][
"SINGLE"
]
=
single_engine
cpu
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
cpu
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
cpu
[
"TRANSPILER"
][
"TDM_SINGLE"
]
=
tdm_single_engine
cpu
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
cpu
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
cpu
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
...
...
@@ -34,7 +35,8 @@ def get_engine(engine, device):
run_engine
=
d_engine
[
transpiler
].
get
(
engine
,
None
)
if
run_engine
is
None
:
raise
ValueError
(
"engine {} can not be supported on device: {}"
.
format
(
engine
,
device
))
raise
ValueError
(
"engine {} can not be supported on device: {}"
.
format
(
engine
,
device
))
return
run_engine
...
...
@@ -92,6 +94,21 @@ def single_engine(args):
return
trainer
def
tdm_single_engine
(
args
):
print
(
"use tdm single engine to run model: {}"
.
format
(
args
.
model
))
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
"TDMSingleTrainer"
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single"
single_envs
[
"train.trainer.device"
]
=
args
.
device
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
...
...
@@ -184,8 +201,10 @@ def get_abs_model(model):
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
description
=
'fleet-rec run'
)
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
str
)
parser
.
add_argument
(
"-e"
,
"--engine"
,
type
=
str
,
choices
=
[
"single"
,
"local_cluster"
,
"cluster"
])
parser
.
add_argument
(
"-d"
,
"--device"
,
type
=
str
,
choices
=
[
"cpu"
,
"gpu"
],
default
=
"cpu"
)
parser
.
add_argument
(
"-e"
,
"--engine"
,
type
=
str
,
choices
=
[
"single"
,
"local_cluster"
,
"cluster"
])
parser
.
add_argument
(
"-d"
,
"--device"
,
type
=
str
,
choices
=
[
"cpu"
,
"gpu"
],
default
=
"cpu"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
envs
.
set_runtime_environs
({
"PACKAGE_BASE"
:
abs_dir
})
...
...
models/recall/tdm/config.yaml
0 → 100644
浏览文件 @
12c654fe
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
train
:
trainer
:
# for cluster training
strategy
:
"
async"
epochs
:
10
workspace
:
"
fleetrec.models.recall.tdm"
reader
:
batch_size
:
32
class
:
"
{workspace}/tdm_reader.py"
train_data_path
:
"
{workspace}/data/train_data"
test_data_path
:
"
{workspace}/data/test_data"
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
node_emb_size
:
64
input_emb_size
:
64
neg_sampling_list
:
[
1
,
2
,
3
,
4
]
output_positive
:
True
topK
:
1
learning_rate
:
0.0001
act
:
"
tanh"
optimizer
:
ADAM
tree_parameters
:
max_layers
:
4
node_nums
:
26
leaf_node_nums
:
13
layer_node_num_list
:
[
2
,
4
,
7
,
12
]
child_nums
:
2
startup
:
single
:
# 建议tree只load一次,保存为paddle tensor,之后从paddle模型热启
load_persistables
:
False
persistables_model_path
:
"
"
load_tree
:
True
tree_layer_path
:
"
"
tree_travel_path
:
"
"
tree_info_path
:
"
"
tree_emb_path
:
"
"
save_init_model
:
True
init_model_path
:
"
"
cluster
:
load_persistables
:
True
persistables_model_path
:
"
"
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
2
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
4
save_last
:
True
\ No newline at end of file
models/recall/tdm/model.py
0 → 100644
浏览文件 @
12c654fe
# -*- coding=utf-8 -*-
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import
paddle.fluid
as
fluid
import
math
from
fleetrec.core.utils
import
envs
from
fleetrec.core.model
import
Model
as
ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
# tree meta hyper parameters
self
.
max_layers
=
envs
.
get_global_env
(
"tree_parameters.max_layers"
,
4
,
self
.
_namespace
)
self
.
node_nums
=
envs
.
get_global_env
(
"tree_parameters.node_nums"
,
26
,
self
.
_namespace
)
self
.
leaf_node_nums
=
envs
.
get_global_env
(
"tree_parameters.leaf_node_nums"
,
13
,
self
.
_namespace
)
self
.
output_positive
=
envs
.
get_global_env
(
"tree_parameters.output_positive"
,
True
,
self
.
_namespace
)
self
.
layer_node_num_list
=
envs
.
get_global_env
(
"tree_parameters.layer_node_num_list"
,
[
2
,
4
,
7
,
12
],
self
.
_namespace
)
self
.
child_nums
=
envs
.
get_global_env
(
"tree_parameters.node_nums"
,
2
,
self
.
_namespace
)
self
.
tree_layer_init_path
=
envs
.
get_global_env
(
"tree_parameters.tree_layer_init_path"
,
None
,
self
.
_namespace
)
# model training hyper parameter
self
.
node_emb_size
=
envs
.
get_global_env
(
"hyper_parameters.node_emb_size"
,
64
,
self
.
_namespace
)
self
.
input_emb_size
=
envs
.
get_global_env
(
"hyper_parameters.input_emb_size"
,
64
,
self
.
_namespace
)
self
.
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
"tanh"
,
self
.
_namespace
)
self
.
neg_sampling_list
=
envs
.
get_global_env
(
"hyper_parameters.neg_sampling_list"
,
[
1
,
2
,
3
,
4
],
self
.
_namespace
)
# model infer hyper parameter
self
.
topK
=
envs
.
get_global_env
(
"hyper_parameters.node_nums"
,
1
,
self
.
_namespace
)
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
32
,
"train.reader"
)
def
train_net
(
self
):
self
.
train_input
()
self
.
tdm_net
()
self
.
avg_loss
()
self
.
metrics
()
def
infer_net
(
self
):
self
.
infer_input
()
self
.
create_first_layer
()
self
.
tdm_infer_net
()
""" -------- Train network detail ------- """
def
train_input
(
self
):
input_emb
=
fluid
.
data
(
name
=
"input_emb"
,
shape
=
[
None
,
self
.
input_emb_size
],
dtype
=
"float32"
,
)
self
.
_data_var
.
append
(
input_emb
)
item_label
=
fluid
.
data
(
name
=
"item_label"
,
shape
=
[
None
,
1
],
dtype
=
"int64"
,
)
self
.
_data_var
.
append
(
item_label
)
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
tdm_net
(
self
):
"""
tdm训练网络的主要流程部分
"""
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
input_emb
=
self
.
_data_var
[
0
]
item_label
=
self
.
_data_var
[
1
]
# 根据输入的item的正样本在给定的树上进行负采样
# sample_nodes 是采样的node_id的结果,包含正负样本
# sample_label 是采样的node_id对应的正负标签
# sample_mask 是为了保持tensor维度一致,padding部分的标签,若为0,则是padding的虚拟node_id
sample_nodes
,
sample_label
,
sample_mask
=
fluid
.
contrib
.
layers
.
tdm_sampler
(
x
=
item_label
,
neg_samples_num_list
=
self
.
neg_sampling_list
,
layer_node_num_list
=
self
.
layer_node_num_list
,
leaf_node_num
=
self
.
leaf_node_nums
,
tree_travel_attr
=
fluid
.
ParamAttr
(
name
=
"TDM_Tree_Travel"
),
tree_layer_attr
=
fluid
.
ParamAttr
(
name
=
"TDM_Tree_Layer"
),
output_positive
=
self
.
output_positive
,
output_list
=
True
,
seed
=
0
,
tree_dtype
=
'int64'
,
dtype
=
'int64'
)
# 查表得到每个节点的Embedding
sample_nodes_emb
=
[
fluid
.
embedding
(
input
=
sample_nodes
[
i
],
is_sparse
=
True
,
size
=
[
self
.
node_nums
,
self
.
node_emb_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"TDM_Tree_Emb"
)
)
for
i
in
range
(
self
.
max_layers
)
]
# 此处进行Reshape是为了之后层次化的分类器训练
sample_nodes_emb
=
[
fluid
.
layers
.
reshape
(
sample_nodes_emb
[
i
],
[
-
1
,
self
.
neg_sampling_list
[
i
]
+
self
.
output_positive
,
self
.
node_emb_size
]
)
for
i
in
range
(
self
.
max_layers
)
]
# 对输入的input_emb进行转换,使其维度与node_emb维度一致
input_trans_emb
=
self
.
input_trans_layer
(
input_emb
)
# 分类器的主体网络,分别训练不同层次的分类器
layer_classifier_res
=
self
.
classifier_layer
(
input_trans_emb
,
sample_nodes_emb
)
# 最后的概率判别FC,将所有层次的node分类结果放到一起以相同的标准进行判别
# 考虑到树极大可能不平衡,有些item不在最后一层,所以需要这样的机制保证每个item都有机会被召回
tdm_fc
=
fluid
.
layers
.
fc
(
input
=
layer_classifier_res
,
size
=
self
.
label_nums
,
act
=
None
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"tdm.cls_fc.weight"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"tdm.cls_fc.bias"
))
# 将loss打平,放到一起计算整体网络的loss
tdm_fc_re
=
fluid
.
layers
.
reshape
(
tdm_fc
,
[
-
1
,
2
])
# 若想对各个层次的loss辅以不同的权重,则在此处无需concat
# 支持各个层次分别计算loss,再乘相应的权重
sample_label
=
fluid
.
layers
.
concat
(
sample_label
,
axis
=
1
)
labels_reshape
=
fluid
.
layers
.
reshape
(
sample_label
,
[
-
1
,
1
])
labels_reshape
.
stop_gradient
=
True
# 计算整体的loss并得到softmax的输出
cost
,
softmax_prob
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
tdm_fc_re
,
label
=
labels_reshape
,
return_softmax
=
True
)
# 通过mask过滤掉虚拟节点的loss
sample_mask
=
fluid
.
layers
.
concat
(
sample_mask
,
axis
=
1
)
mask_reshape
=
fluid
.
layers
.
reshape
(
sample_mask
,
[
-
1
,
1
])
mask_index
=
fluid
.
layers
.
where
(
mask_reshape
!=
0
)
mask_index
.
stop_gradient
=
True
self
.
mask_cost
=
fluid
.
layers
.
gather_nd
(
cost
,
mask_index
)
self
.
mask_prob
=
fluid
.
layers
.
gather_nd
(
softmax_prob
,
mask_index
)
self
.
mask_label
=
fluid
.
layers
.
gather_nd
(
labels_reshape
,
mask_index
)
self
.
_predict
=
self
.
mask_prob
def
avg_loss
(
self
):
avg_cost
=
fluid
.
layers
.
reduce_mean
(
self
.
mask_cost
)
self
.
_cost
=
avg_cost
def
metrics
(
self
):
auc
,
batch_auc
,
_
=
fluid
.
layers
.
auc
(
input
=
self
.
_predict
,
label
=
self
.
mask_label
,
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
self
.
_metrics
[
"AUC"
]
=
auc
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
self
.
_metrics
[
"BATCH_LOSS"
]
=
self
.
_cost
def
input_trans_layer
(
self
,
input_emb
):
"""
输入侧训练组网
"""
# 将input映射到与node相同的维度
input_fc_out
=
fluid
.
layers
.
fc
(
input
=
input_emb
,
size
=
self
.
node_emb_size
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.input_fc.weight"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.input_fc.bias"
),
)
# 将input_emb映射到各个不同层次的向量表示空间
input_layer_fc_out
=
[
fluid
.
layers
.
fc
(
input
=
input_fc_out
,
size
=
self
.
node_emb_size
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
i
)),
)
for
i
in
range
(
self
.
max_layers
)
]
return
input_layer_fc_out
def
_expand_layer
(
self
,
input_layer
,
node
,
layer_idx
):
# 扩展input的输入,使数量与node一致,
# 也可以以其他broadcast的操作进行代替
# 同时兼容了训练组网与预测组网
input_layer_unsequeeze
=
fluid
.
layers
.
unsqueeze
(
input
=
input_layer
,
axes
=
[
1
])
if
not
isinstance
(
node
,
list
):
input_layer_expand
=
fluid
.
layers
.
expand
(
input_layer_unsequeeze
,
expand_times
=
[
1
,
node
.
shape
[
1
],
1
])
else
:
input_layer_expand
=
fluid
.
layers
.
expand
(
input_layer_unsequeeze
,
expand_times
=
[
1
,
node
[
layer_idx
].
shape
[
1
],
1
])
return
input_layer_expand
def
classifier_layer
(
self
,
input
,
node
):
# 扩展input,使维度与node匹配
input_expand
=
[
self
.
_expand_layer
(
input
[
i
],
node
,
i
)
for
i
in
range
(
self
.
max_layers
)
]
# 将input_emb与node_emb concat到一起过分类器FC
input_node_concat
=
[
fluid
.
layers
.
concat
(
input
=
[
input_expand
[
i
],
node
[
i
]],
axis
=
2
)
for
i
in
range
(
self
.
max_layers
)
]
hidden_states_fc
=
[
fluid
.
layers
.
fc
(
input
=
input_node_concat
[
i
],
size
=
self
.
node_emb_size
,
num_flatten_dims
=
2
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
i
))
)
for
i
in
range
(
self
.
max_layers
)
]
# 如果将所有层次的node放到一起计算loss,则需要在此处concat
# 将分类器结果以batch为准绳concat到一起,而不是layer
# 维度形如[batch_size, total_node_num, node_emb_size]
hidden_states_concat
=
fluid
.
layers
.
concat
(
hidden_states_fc
,
axis
=
1
)
return
hidden_states_concat
""" -------- Infer network detail ------- """
def
infer_input
(
self
):
input_emb
=
fluid
.
layers
.
data
(
name
=
"input_emb"
,
shape
=
[
self
.
input_emb_size
],
dtype
=
"float32"
,
)
self
.
_data_var
.
append
(
input_emb
)
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
get_layer_list
(
self
):
"""get layer list from layer_list.txt"""
layer_list
=
[]
with
open
(
self
.
tree_layer_init_path
,
'r'
)
as
fin
:
for
line
in
fin
.
readlines
():
l
=
[]
layer
=
(
line
.
split
(
'
\n
'
))[
0
].
split
(
','
)
for
node
in
layer
:
if
node
:
l
.
append
(
node
)
layer_list
.
append
(
l
)
return
layer_list
def
create_first_layer
(
self
):
"""decide which layer to start infer"""
self
.
get_layer_list
()
first_layer_id
=
0
for
idx
,
layer_node
in
enumerate
(
self
.
layer_node_num_list
):
if
layer_node
>=
self
.
topK
:
first_layer_id
=
idx
break
first_layer_node
=
self
.
layer_list
[
first_layer_id
]
self
.
first_layer_idx
=
first_layer_id
node_list
=
[]
mask_list
=
[]
for
id
in
node_list
:
node_list
.
append
(
fluid
.
layers
.
fill_constant
(
[
self
.
batch_size
,
1
],
value
=
id
,
dtype
=
'int64'
))
mask_list
.
append
(
fluid
.
layers
.
fill_constant
(
[
self
.
batch_size
,
1
],
value
=
0
,
dtype
=
'int64'
))
self
.
first_layer_node
=
fluid
.
layers
.
concat
(
node_list
,
axis
=
1
)
self
.
first_layer_node_mask
=
fluid
.
layers
.
concat
(
mask_list
,
axis
=
1
)
def
tdm_infer_net
(
self
,
inputs
):
"""
infer的主要流程
infer的基本逻辑是:从上层开始(具体层idx由树结构及TopK值决定)
1、依次通过每一层分类器,得到当前层输入的指定节点的prob
2、根据prob值大小,取topK的节点,取这些节点的孩子节点作为下一层的输入
3、循环1、2步骤,遍历完所有层,得到每一层筛选结果的集合
4、将筛选结果集合中的叶子节点,拿出来再做一次topK,得到最终的召回输出
"""
input_emb
=
self
.
_data_var
[
0
]
node_score
=
[]
node_list
=
[]
current_layer_node
=
self
.
first_layer_node
current_layer_node_mask
=
self
.
first_layer_node_mask
input_trans_emb
=
self
.
input_trans_net
.
input_fc_infer
(
input_emb
)
for
layer_idx
in
range
(
self
.
first_layer_idx
,
self
.
max_layers
):
# 确定当前层的需要计算的节点数
if
layer_idx
==
self
.
first_layer_idx
:
current_layer_node_num
=
self
.
first_layer_node
.
shape
[
1
]
else
:
current_layer_node_num
=
current_layer_node
.
shape
[
1
]
*
\
current_layer_node
.
shape
[
2
]
current_layer_node
=
fluid
.
layers
.
reshape
(
current_layer_node
,
[
-
1
,
current_layer_node_num
])
current_layer_node_mask
=
fluid
.
layers
.
reshape
(
current_layer_node_mask
,
[
-
1
,
current_layer_node_num
])
node_emb
=
fluid
.
embedding
(
input
=
current_layer_node
,
size
=
[
self
.
node_nums
,
self
.
node_embed_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"TDM_Tree_Emb"
))
input_fc_out
=
self
.
layer_fc_infer
(
input_trans_emb
,
layer_idx
)
# 过每一层的分类器
layer_classifier_res
=
self
.
classifier_layer_infer
(
input_fc_out
,
node_emb
,
layer_idx
)
# 过最终的判别分类器
tdm_fc
=
fluid
.
layers
.
fc
(
input
=
layer_classifier_res
,
size
=
self
.
label_nums
,
act
=
None
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"tdm.cls_fc.weight"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"tdm.cls_fc.bias"
))
prob
=
fluid
.
layers
.
softmax
(
tdm_fc
)
positive_prob
=
fluid
.
layers
.
slice
(
prob
,
axes
=
[
2
],
starts
=
[
1
],
ends
=
[
2
])
prob_re
=
fluid
.
layers
.
reshape
(
positive_prob
,
[
-
1
,
current_layer_node_num
])
# 过滤掉padding产生的无效节点(node_id=0)
node_zero_mask
=
fluid
.
layers
.
cast
(
current_layer_node
,
'bool'
)
node_zero_mask
=
fluid
.
layers
.
cast
(
node_zero_mask
,
'float'
)
prob_re
=
prob_re
*
node_zero_mask
# 在当前层的分类结果中取topK,并将对应的score及node_id保存下来
k
=
self
.
topK
if
current_layer_node_num
<
self
.
topK
:
k
=
current_layer_node_num
_
,
topk_i
=
fluid
.
layers
.
topk
(
prob_re
,
k
)
# index_sample op根据下标索引tensor对应位置的值
# 若paddle版本>2.0,调用方式为paddle.index_sample
top_node
=
fluid
.
contrib
.
layers
.
index_sample
(
current_layer_node
,
topk_i
)
prob_re_mask
=
prob_re
*
current_layer_node_mask
# 过滤掉非叶子节点
topk_value
=
fluid
.
contrib
.
layers
.
index_sample
(
prob_re_mask
,
topk_i
)
node_score
.
append
(
topk_value
)
node_list
.
append
(
top_node
)
# 取当前层topK结果的孩子节点,作为下一层的输入
if
layer_idx
<
self
.
max_layers
-
1
:
# tdm_child op 根据输入返回其 child 及 child_mask
# 若child是叶子节点,则child_mask=1,否则为0
current_layer_node
,
current_layer_node_mask
=
\
fluid
.
contrib
.
layers
.
tdm_child
(
x
=
top_node
,
node_nums
=
self
.
node_nums
,
child_nums
=
self
.
child_nums
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"TDM_Tree_Info"
),
dtype
=
'int64'
)
total_node_score
=
fluid
.
layers
.
concat
(
node_score
,
axis
=
1
)
total_node
=
fluid
.
layers
.
concat
(
node_list
,
axis
=
1
)
# 考虑到树可能是不平衡的,计算所有层的叶子节点的topK
res_score
,
res_i
=
fluid
.
layers
.
topk
(
total_node_score
,
self
.
topK
)
res_layer_node
=
fluid
.
contrib
.
layers
.
index_sample
(
total_node
,
res_i
)
res_node
=
fluid
.
layers
.
reshape
(
res_layer_node
,
[
-
1
,
self
.
topK
,
1
])
# 利用Tree_info信息,将node_id转换为item_id
tree_info
=
fluid
.
default_main_program
().
global_block
().
var
(
"TDM_Tree_Info"
)
res_node_emb
=
fluid
.
layers
.
gather_nd
(
tree_info
,
res_node
)
res_item
=
fluid
.
layers
.
slice
(
res_node_emb
,
axes
=
[
2
],
starts
=
[
0
],
ends
=
[
1
])
self
.
res_item_re
=
fluid
.
layers
.
reshape
(
res_item
,
[
-
1
,
self
.
topK
])
def
input_fc_infer
(
self
,
input_emb
):
"""
输入侧预测组网第一部分,将input转换为node同维度
"""
# 组网与训练时保持一致
input_fc_out
=
fluid
.
layers
.
fc
(
input
=
input_emb
,
size
=
self
.
node_emb_size
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.input_fc.weight"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.input_fc.bias"
),
)
return
input_fc_out
def
layer_fc_infer
(
self
,
input_fc_out
,
layer_idx
):
"""
输入侧预测组网第二部分,将input映射到不同层次的向量空间
"""
# 组网与训练保持一致,通过layer_idx指定不同层的FC
input_layer_fc_out
=
fluid
.
layers
.
fc
(
input
=
input_fc_out
,
size
=
self
.
node_emb_size
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
layer_idx
)),
)
return
input_layer_fc_out
def
classifier_layer_infer
(
self
,
input
,
node
,
layer_idx
):
# 为infer组网提供的简化版classifier,通过给定layer_idx调用不同层的分类器
# 同样需要保持input与node的维度匹配
input_expand
=
self
.
_expand_layer
(
input
,
node
,
layer_idx
)
# 与训练网络相同的concat逻辑
input_node_concat
=
fluid
.
layers
.
concat
(
input
=
[
input_expand
,
node
],
axis
=
2
)
# 根据参数名param_attr调用不同的层的FC
hidden_states_fc
=
fluid
.
layers
.
fc
(
input
=
input_node_concat
,
size
=
self
.
node_emb_size
,
num_flatten_dims
=
2
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
layer_idx
)))
return
hidden_states_fc
models/recall/tdm/tdm_reader.py
0 → 100644
浏览文件 @
12c654fe
# -*- coding=utf8 -*-
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from
__future__
import
print_function
from
fleetrec.core.reader
import
Reader
from
fleetrec.core.utils
import
envs
class
TrainReader
(
reader
):
def
reader
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
iterator
():
"""
This function needs to be implemented by the user, based on data format
"""
features
=
(
line
.
strip
(
'
\n
'
)).
split
(
'
\t
'
)
input_emb
=
features
[
0
].
split
(
' '
)
item_label
=
[
features
[
1
]]
feature_name
=
[
"input_emb"
,
"item_label"
]
yield
zip
(
feature_name
,
[
input_emb
]
+
[
item_label
])
return
Reader
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录