learner_process.cc 5.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 *Author: xiexionghang
 *Train样本
 */
#include <omp.h>
#include "paddle/fluid/train/custom_trainer/feed/accessor/epoch_accessor.h"
#include "paddle/fluid/train/custom_trainer/feed/process/learner_process.h"

namespace paddle {
namespace custom_trainer {
namespace feed {

int LearnerProcess::initialize(std::shared_ptr<TrainerContext> context_ptr) {
    int ret = Process::initialize(context_ptr);
    auto& config = _context_ptr->trainer_config;
    _train_thread_num = config["train_thread_num"].as<int>();
    _threads_executor.resize(_train_thread_num);
    
    if (config["executor"]) {
        _executor_num = config["executor"].size();
        omp_set_num_threads(_train_thread_num);
        #pragma omp parallel for
        for (int i = 0; i < _train_thread_num; ++i) {
            _threads_executor[i].resize(_executor_num);
            for (int e = 0; e < _executor_num; ++e) {
                auto e_class = config["executor"][e]["class"].as<std::string>();
                auto* e_ptr = CREATE_CLASS(Executor, e_class);
                _threads_executor[i][e].reset(e_ptr);  
                if (e_ptr->initialize(config["executor"][e], context_ptr) != 0) {
                    ret = -1;
                }
            }
        }
    }
    return 0;
}

X
xiexionghang 已提交
38
std::future<int> LearnerProcess::save_model(uint64_t epoch_id, int table_id, ModelSaveWay way) {
X
xiexionghang 已提交
39 40 41 42 43 44 45 46 47 48 49
    std::promise<int> p;
    auto ret = p.get_future();
    if (_context_ptr->epoch_accessor->need_save_model(epoch_id, way)) {
        //TODO
        //context_ptr->pslib_client()->save();
    } else {
        p.set_value(0);
    }
    return ret;
}

X
xiexionghang 已提交
50
int LearnerProcess::wait_save_model(uint64_t epoch_id, ModelSaveWay way) {
X
xiexionghang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    auto* environment = _context_ptr->environment.get();
    if (!environment->is_master_node()) {
        return 0;
    }
    int ret_size = 0;
    auto table_num = _context_ptr->params_table_list.size();
    std::future<int> rets[table_num];
    for (int i = 0; i < table_num; ++i) {
        auto table_id = _context_ptr->params_table_list[i].table_id();
        rets[ret_size++] = save_model(epoch_id, table_id, way); 
    }

    int all_ret = 0;
    for (int i = 0; i < ret_size; ++i) {
        rets[i].wait();
        all_ret |= rets[i].get();
    }
    return all_ret;
}

int LearnerProcess::run() {
    auto* environment = _context_ptr->environment.get();
    auto* epoch_accessor = _context_ptr->epoch_accessor.get(); 
X
xiexionghang 已提交
74
    uint64_t epoch_id = epoch_accessor->current_epoch_id();
X
xiexionghang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    environment->log(EnvironmentLogType::MASTER_LOG, EnvironmentLogLevel::NOTICE, 
        "Resume traine with epoch_id:%d label:%s", epoch_id, _context_ptr->epoch_accessor->text(epoch_id).c_str());
    
    //判断是否先dump出base
    wait_save_model(epoch_id, ModelSaveWay::ModelSaveInferenceBase);
    environment->barrier_all(); 
    
    while (true) {
        epoch_accessor->next_epoch();
        epoch_id = epoch_accessor->current_epoch_id();
        std::string epoch_log_title= paddle::string::format_string(
            "train epoch_id:%d label:%s", epoch_id, epoch_accessor->text(epoch_id).c_str());
        
        //Step1. 等待样本ready
        environment->log(EnvironmentLogType::MASTER_LOG, EnvironmentLogLevel::NOTICE, 
            "Start %s, wait data ready", epoch_log_title.c_str());
        while (!epoch_accessor->data_ready(epoch_id)) {
            sleep(30);  
            environment->log(EnvironmentLogType::MASTER_LOG, EnvironmentLogLevel::NOTICE, 
                "%s, data not ready, wait 30s", epoch_log_title.c_str());
        } 
        environment->log(EnvironmentLogType::MASTER_LOG, EnvironmentLogLevel::NOTICE, 
            "%s, data is ready, start traning", epoch_log_title.c_str());
        environment->barrier_all();

        //Step2. 运行训练网络
        bool already_dump_inference_model = false;
        for (int i = 0; i < _executor_num; ++i) {
            std::vector<std::shared_ptr<std::thread>> train_threads(_train_thread_num);
            for (int thread_id = 0; thread_id < _train_thread_num; ++thread_id) {
                train_threads[i].reset(new std::thread([this](int exe_idx, int thread_idx) {
                    auto* executor = _threads_executor[thread_idx][exe_idx].get();
                    run_executor(executor);                      
                }, i, thread_id));
            }   
            for (int i = 0; i < _train_thread_num; ++i) {
                train_threads[i]->join();
            }
            environment->barrier_all();

            if (_threads_executor[0][i]->is_dump_all_model()) {
                already_dump_inference_model = true;
                wait_save_model(epoch_id, ModelSaveWay::ModelSaveInferenceDelta);
            }
            environment->barrier_all();
        }

        //Step3. Dump Model For Delta&&Checkpoint
        if (!already_dump_inference_model) {
            already_dump_inference_model = true;
            wait_save_model(epoch_id, ModelSaveWay::ModelSaveInferenceDelta);
        } 
        wait_save_model(epoch_id, ModelSaveWay::ModelSaveTrainCheckpoint);
        environment->barrier_all(); 
        
        //Step4. Output Monitor && RunStatus
        //TODO
    }
    
    return 0;
}

int LearnerProcess::run_executor(Executor* executor) {
    //TODO
    return 0;
}

}  // namespace feed
}  // namespace custom_trainer
}  // namespace paddle