precision_recall.py 5.9 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import numpy as np
import paddle.fluid as fluid

from paddlerec.core.metric import Metric
from paddle.fluid.layers import nn, accuracy
from paddle.fluid.initializer import Constant
from paddle.fluid.layer_helper import LayerHelper
M
malin10 已提交
24
from paddle.fluid.layers.tensor import Variable
M
malin10 已提交
25 26 27 28 29 30 31 32 33


class PrecisionRecall(Metric):
    """
    Metric For Fluid Model
    """

    def __init__(self, **kwargs):
        """ """
M
malin10 已提交
34 35 36
        if "input" not in kwargs or "label" not in kwargs or "class_num" not in kwargs:
            raise ValueError(
                "PrecisionRecall expect input, label and class_num as inputs.")
M
malin10 已提交
37
        predict = kwargs.get("input")
M
malin10 已提交
38
        label = kwargs.get("label")
M
update  
malin10 已提交
39
        self.num_cls = kwargs.get("class_num")
M
malin10 已提交
40 41 42 43 44 45 46 47 48 49 50

        if not isinstance(predict, Variable):
            raise ValueError("input must be Variable, but received %s" %
                             type(predict))
        if not isinstance(label, Variable):
            raise ValueError("label must be Variable, but received %s" %
                             type(label))

        helper = LayerHelper("PaddleRec_PrecisionRecall", **kwargs)
        label = fluid.layers.cast(label, dtype="int32")
        label.stop_gradient = True
M
malin10 已提交
51 52 53 54 55 56 57 58
        max_probs, indices = fluid.layers.nn.topk(predict, k=1)
        indices = fluid.layers.cast(indices, dtype="int32")
        indices.stop_gradient = True

        states_info, _ = helper.create_or_get_global_variable(
            name="states_info",
            persistable=True,
            dtype='float32',
M
update  
malin10 已提交
59
            shape=[self.num_cls, 4])
M
malin10 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        states_info.stop_gradient = True

        helper.set_variable_initializer(
            states_info, Constant(
                value=0.0, force_cpu=True))

        batch_metrics, _ = helper.create_or_get_global_variable(
            name="batch_metrics",
            persistable=False,
            dtype='float32',
            shape=[6])
        accum_metrics, _ = helper.create_or_get_global_variable(
            name="global_metrics",
            persistable=False,
            dtype='float32',
            shape=[6])

        batch_states = fluid.layers.fill_constant(
M
update  
malin10 已提交
78
            shape=[self.num_cls, 4], value=0.0, dtype="float32")
M
malin10 已提交
79 80 81 82
        batch_states.stop_gradient = True

        helper.append_op(
            type="precision_recall",
M
update  
malin10 已提交
83
            attrs={'class_number': self.num_cls},
M
malin10 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
            inputs={
                'MaxProbs': [max_probs],
                'Indices': [indices],
                'Labels': [label],
                'StatesInfo': [states_info]
            },
            outputs={
                'BatchMetrics': [batch_metrics],
                'AccumMetrics': [accum_metrics],
                'AccumStatesInfo': [batch_states]
            })
        helper.append_op(
            type="assign",
            inputs={'X': [batch_states]},
            outputs={'Out': [states_info]})

        batch_states.stop_gradient = True
        states_info.stop_gradient = True

M
update  
malin10 已提交
103 104 105
        self._global_communicate_var = dict()
        self._global_communicate_var['states_info'] = (states_info.name,
                                                       "float32")
M
malin10 已提交
106 107 108

        self.metrics = dict()
        self.metrics["precision_recall_f1"] = accum_metrics
M
update  
malin10 已提交
109
        self.metrics["[TP FP TN FN]"] = states_info
M
malin10 已提交
110 111 112

    # self.metrics["batch_metrics"] = batch_metrics

M
update  
malin10 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    def calculate(self, global_metrics):
        for key in self._global_communicate_var:
            if key not in global_metrics:
                raise ValueError("%s not existed" % key)

        def calc_precision(tp_count, fp_count):
            if tp_count > 0.0 or fp_count > 0.0:
                return tp_count / (tp_count + fp_count)
            return 1.0

        def calc_recall(tp_count, fn_count):
            if tp_count > 0.0 or fn_count > 0.0:
                return tp_count / (tp_count + fn_count)
            return 1.0

        def calc_f1_score(precision, recall):
            if precision > 0.0 or recall > 0.0:
                return 2 * precision * recall / (precision + recall)
            return 0.0

        states = global_metrics["states_info"]
        total_tp_count = 0.0
        total_fp_count = 0.0
        total_fn_count = 0.0
        macro_avg_precision = 0.0
        macro_avg_recall = 0.0
        for i in range(self.num_cls):
            total_tp_count += states[i][0]
            total_fp_count += states[i][1]
            total_fn_count += states[i][3]
            macro_avg_precision += calc_precision(states[i][0], states[i][1])
            macro_avg_recall += calc_recall(states[i][0], states[i][3])
        metrics = []
        macro_avg_precision /= self.num_cls
        macro_avg_recall /= self.num_cls
        metrics.append(macro_avg_precision)
        metrics.append(macro_avg_recall)
        metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall))
        micro_avg_precision = calc_precision(total_tp_count, total_fp_count)
        metrics.append(micro_avg_precision)
        micro_avg_recall = calc_recall(total_tp_count, total_fn_count)
        metrics.append(micro_avg_recall)
        metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall))
        return "total metrics: [TP, FP, TN, FN]=%s; precision_recall_f1=%s" % (
            str(states), str(np.array(metrics).astype('float32')))

M
malin10 已提交
159 160
    def get_result(self):
        return self.metrics