// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once // framework deps #include "paddle/fluid/framework/pten_utils.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/variable.h" // pten deps #include "paddle/pten/all.h" #include "paddle/pten/api/all.h" #include "paddle/pten/api/lib/api_declare.h" #include "paddle/pten/api/lib/utils/tensor_utils.h" #include "paddle/pten/core/convert_utils.h" /** * This class is used by Eager mode for now. It's painful to do this in Eager * Mode, the better * choice is to use paddle::experimental::Tensor directly. However, we have a * punch of nested kernel code, and * they use paddle::framework::Variable in inner logic code. So, we have to * provide variable in * paddle::framework::ExecutionContext to support it. We should remove this as * soon as we finish our latest * Pten Lib, and use paddle::experimental::Tensor instead. * * Note: Keep this class as clean as possible. * This class should only support method declared in * paddle::experimental::Tensor with access method of * paddle::framework::Variable no more members are acceptable. * **/ namespace egr { class EagerTensor final { public: /* Part 1: Constructors */ EagerTensor() : tensor_(std::make_shared()), var_(paddle::framework::Variable()) {} explicit EagerTensor(const std::string& name) : tensor_(std::make_shared(name)), var_(paddle::framework::Variable()) {} /** * @description: Use a TensorImpl pointer to construct a Tensor * @param {shared_ptr} tensor_impl * @return {Tensor} */ explicit EagerTensor(const std::shared_ptr& tensor_impl) : tensor_(std::make_shared(tensor_impl)), var_(paddle::framework::Variable()) {} EagerTensor(const EagerTensor&) = default; EagerTensor(EagerTensor&&) = default; /* Part 2: Name access methods */ /** * @description: Return the name of current Tensor. * @param None * @return {const std::string&} */ const std::string& name() const { return tensor_->name(); } /** * @description: Set the name of current Tensor. * @param {const std::string& name} * @return None */ void set_name(const std::string& name) { tensor_->set_name(name); } /* Part 3: Dimension, DataType and DataLayout methods */ /** * @description: Return the number of elements of current Tensor. * @param None * @return {int64_t} */ int64_t numel() const { return tensor_->numel(); } /** * @description: Return the shape (dimensions) of current Tensor. * @param None * @return {DDim} */ paddle::framework::DDim shape() const { return tensor_->dims(); } /** * @description: Return the data type of current Tensor. * @param None * @return {DataType} */ paddle::experimental::DataType type() const { return tensor_->type(); } /** * @description: Return the layout of current Tensor. * @param None * @return {DataLayout} */ paddle::experimental::DataLayout layout() const { return tensor_->layout(); } /* Part 3: Device and Backend methods */ /** * @description: Return the place (device) of current Tensor. * @param None * @return {Place} */ paddle::platform::Place place() const { return tensor_->inner_place(); } /** * Backend judgment APIs, shield the concept of Backend. */ bool is_cpu() const { return paddle::platform::is_cpu_place(place()); } bool is_cuda() const { return paddle::platform::is_gpu_place(place()); } /* Part 4: Data Access methods */ /** * @description: Return the implemention of current Tensor. * @param None * @return {std::shared_ptr} */ std::shared_ptr impl() const { return tensor_->impl(); } /** * @description: Set the implemention of current Tensor. * @param {std::shared_ptr} * @return None */ void set_impl(const std::shared_ptr& impl) { tensor_->set_impl(impl); } // TODO(chenweihang): Whether API Tensor need `data` and `mutable_data`? // TODO(chenweihang): slice and split methods use kernels? /* Part 5: Status utils methods */ /** * @description: Determine whether it is a meaningful Tensor * @param None * @return {bool} */ bool defined() const { return tensor_->defined(); } /** * @description: Determine whether Tensor is initialized * @param None * @return {bool} */ bool initialized() const { return tensor_->initialized(); } bool safe_initialized() const { return initialized() || var_.IsInitialized(); } /** * @description: Reset the Tensor implementation * @param None * @return {void} */ void reset() { tensor_->reset(); } /** * @brief Transfer the current Tensor to the specified device and return. * * @param place, the target place of which the tensor will copy to. * @return Tensor */ // TODO(chenweihang): replace Backend by new Place EagerTensor copy_to(pten::Backend backend, bool blocking) const { if (Var().IsInitialized()) { const_cast(this)->SyncToTensor(); } return EagerTensor(tensor_->copy_to(backend, blocking)); } /** * @brief Transfer the source Tensor to current Tensor. * * @param src, the source Tensor to be copied. * @param blocking, Should we copy this in sync way. * @return void */ void copy_(const EagerTensor& src, const bool blocking) { if (src.Var().IsInitialized()) { const_cast(&src)->SyncToTensor(); } if (Var().IsInitialized()) { SyncToTensor(); } tensor_->copy_(*(src.tensor_.get()), blocking); } /* Part 6: Operator overloading */ EagerTensor& operator=(const EagerTensor& x) & { tensor_ = x.tensor_; var_ = x.var_; return *this; } EagerTensor& operator=(EagerTensor&& x) & { tensor_ = std::move(x.tensor_); var_ = std::move(x.var_); return *this; } /* Part 7: Autograd methods */ paddle::experimental::AbstractAutogradMeta* get_autograd_meta() const { return tensor_->get_autograd_meta(); } void set_autograd_meta( std::shared_ptr autograd_meta) { tensor_->set_autograd_meta(autograd_meta); } /** Part 9: Get framework::Variable from EagerTensor **/ const paddle::framework::Variable& Var() const { return var_; } paddle::framework::Variable* MutableVar() { return &var_; } /** Part 10: Sync paddle::framework::Variable with pten::Tensor **/ void SyncToVar(paddle::framework::proto::VarType_Type type = paddle::framework::proto::VarType::LOD_TENSOR) { // Synchronize allocation only once. if (!var_.IsInitialized()) { // TODO(jiabin): Support selected rows later. if (this->initialized()) { if (type == paddle::framework::proto::VarType::LOD_TENSOR) { auto* framework_tensor = var_.GetMutable(); framework_tensor->Resize(tensor_->dims()); framework_tensor->set_layout(tensor_->layout()); // Contruct framework::Tensor from egr::EagerTensor auto tensor_dense = std::dynamic_pointer_cast(tensor_->impl()); if (tensor_dense) { paddle::experimental::MovesStorage(tensor_dense.get(), framework_tensor); } else { PADDLE_THROW(paddle::platform::errors::Fatal( "Unrecognized egr::EagerTensor type, only " "DenseTensor is supported for now.")); } } } else { PADDLE_THROW(paddle::platform::errors::Fatal( "Can not Sync EagerTensor %s whose " "pten::DenseTensor is not initialized!", name())); } } } /** Part 11: Sync paddle::framework::Variable with pten::Tensor **/ void SyncToTensor() { // Synchronize allocation only once. if (!this->defined() || !this->initialized()) { // TODO(jiabin): Support selected rows later. if (var_.IsInitialized()) { if (var_.IsType()) { SetImplWithLegacyTensor(); } else if (var_.IsType()) { SetImplWithLegacyTensor(); } else { PADDLE_THROW(paddle::platform::errors::Fatal( "Unable to fetch underlying tensor " "from VarBase, only LoDTensor and " "Tensor are supported for now")); } } else { PADDLE_THROW(paddle::platform::errors::Fatal( "Can not Sync EagerTensor %s whose paddle::framework::Variable is " "not initialized!", name())); } } } void ResetVar(const paddle::framework::Variable& src) { var_ = src; } const std::shared_ptr& Tensor() const { return tensor_; } void set_tensor(const std::shared_ptr& tensor) { tensor_ = tensor; } private: template void SetImplWithLegacyTensor() { const auto& framework_tensor = var_.Get(); this->set_impl( std::move(paddle::experimental::MakePtenDenseTensor(framework_tensor))); var_.Clear(); } private: /** * @description: Use a pten::Tensor pointer to construct a EagerTensor, never * public this!!!!. * @param {pten::Tensor} tensor * @return {EagerTensor} */ explicit EagerTensor(const paddle::experimental::Tensor& tensor) : tensor_(std::make_shared(tensor)), var_(paddle::framework::Variable()) {} std::shared_ptr tensor_ = nullptr; paddle::framework::Variable var_; }; } // namespace egr