/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/fake_quantize_op.h" #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/operators/clip_op.h" #include "paddle/fluid/platform/transform.h" namespace paddle { namespace operators { template struct Compare { public: bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); } }; template struct FindAbsMaxFunctor { void operator()(const platform::CPUDeviceContext& ctx, const T* in, const int num, T* out) { *out = std::abs(*(std::max_element(in + 0, in + num, Compare()))); } }; template struct FindAbsMaxFunctor; template struct FindChannelAbsMaxFunctor { void operator()(const platform::CPUDeviceContext& ctx, const T* in, const int num, const int channel, T* out) { const int channel_size = num / channel; for (int i = 0; i < channel; i++) { auto* start = in + i * channel_size; auto* end = in + (i + 1) * channel_size; out[i] = std::abs(*(std::max_element(start, end, Compare()))); } } }; template struct FindChannelAbsMaxFunctor; template struct ClipAndFakeQuantFunctor { void operator()(const platform::CPUDeviceContext& ctx, const framework::Tensor& in, const framework::Tensor& scale, const int bin_cnt, framework::Tensor* out) { T s = scale.data()[0]; platform::Transform trans; trans(ctx, in.data(), in.data() + in.numel(), out->mutable_data(ctx.GetPlace()), ClipFunctor(-s, s)); auto out_e = framework::EigenVector::Flatten(*out); out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round(); } }; template struct ClipAndFakeQuantFunctor; template struct ClipAndFakeQuantDequantFunctor { void operator()(const platform::CPUDeviceContext& ctx, const framework::Tensor& in, const framework::Tensor& scale, const int bin_cnt, framework::Tensor* out) { T s = scale.data()[0]; platform::Transform trans; trans(ctx, in.data(), in.data() + in.numel(), out->mutable_data(ctx.GetPlace()), ClipFunctor(-s, s)); auto out_e = framework::EigenVector::Flatten(*out); out_e.device(*ctx.eigen_device()) = (s / bin_cnt) * (bin_cnt / s * out_e).round(); } }; template struct ClipAndFakeQuantDequantFunctor; template struct ChannelClipAndFakeQuantFunctor { void operator()(const platform::CPUDeviceContext& ctx, const framework::Tensor& in, const framework::Tensor& scale, const int bin_cnt, const int channel, framework::Tensor* out) { auto* scale_data = scale.data(); auto* in_data = in.data(); auto* out_data = out->mutable_data(ctx.GetPlace()); const int channel_size = in.numel() / channel; platform::Transform trans; for (int i = 0; i < channel; i++) { T s = scale_data[i]; auto* start = in_data + i * channel_size; auto* end = in_data + (i + 1) * channel_size; trans(ctx, start, end, out_data + i * channel_size, ClipFunctor(-s, s)); } for (int i = 0; i < channel; i++) { T s = scale_data[i]; framework::Tensor one_channel_out = out->Slice(i, i + 1); auto out_e = framework::EigenVector::Flatten(one_channel_out); out_e.device(*ctx.eigen_device()) = (bin_cnt / s * out_e).round(); } } }; template struct ChannelClipAndFakeQuantFunctor; template struct FindRangeAbsMaxFunctor { void operator()(const platform::CPUDeviceContext& ctx, const framework::Tensor& cur_scale, const framework::Tensor& last_scale, const framework::Tensor& iter, const int window_size, framework::Tensor* scales_arr, framework::Tensor* out_scale) { T* scale_arr = scales_arr->mutable_data(ctx.GetPlace()); int64_t it = iter.data()[0]; int idx = it % window_size; T removed = scale_arr[idx]; T cur = cur_scale.data()[0]; scale_arr[idx] = cur; T max = last_scale.data()[0]; if (max < cur) { max = cur; } else if (fabs(removed - max) < 1e-6) { int size = (it > window_size) ? window_size : it; FindAbsMaxFunctor()(ctx, scale_arr, size, &max); } out_scale->mutable_data(ctx.GetPlace())[0] = max; } }; template struct FindRangeAbsMaxFunctor; template struct FindMovingAverageAbsMaxFunctor { void operator()(const platform::CPUDeviceContext& ctx, const framework::Tensor& in_accum, const framework::Tensor& in_state, const T* cur_scale, const float rate, framework::Tensor* out_state, framework::Tensor* out_accum, framework::Tensor* out_scale) { T accum = in_accum.data()[0]; T state = in_state.data()[0]; T scale = cur_scale[0]; state = rate * state + 1; accum = rate * accum + scale; scale = accum / state; out_state->mutable_data(ctx.GetPlace())[0] = state; out_accum->mutable_data(ctx.GetPlace())[0] = accum; out_scale->mutable_data(ctx.GetPlace())[0] = scale; } }; template struct FindMovingAverageAbsMaxFunctor; class FakeQuantizeAbsMaxOp : public framework::OperatorWithKernel { public: FakeQuantizeAbsMaxOp(const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FakeQuantizeOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of FakeQuantizeOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("OutScale"), "Output(Scale) of FakeQuantizeOp should not be null."); ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("OutScale", {1}); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(ctx.Input("X")->type(), ctx.device_context()); } }; class FakeQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input is float data type."); AddOutput("Out", "(Tensor) Output of quantized low level tensor, " "but also saved as float data type."); AddOutput("OutScale", "(Tensor) Current scale"); AddAttr("bit_length", "(int, default 8)") .SetDefault(8) .AddCustomChecker([](const int& bit_length) { PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16, "'bit_length' should be between 1 and 16."); }); AddComment(R"DOC( FakeQuantize operator $$scale = max(abs(X))$$ $$range = 2^{bit_length - 1} - 1$$ $$Out = round(X/scale * range)$$ )DOC"); } }; class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FakeChannelWiseQuantizeOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("Out"), "Output(Out) of FakeChannelWiseQuantizeOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("OutScale"), "Output(Scale) of FakeChannelWiseQuantizeOp should not be null."); ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[0]}); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(ctx.Input("X")->type(), ctx.GetPlace()); } }; class FakeChannelWiseQuantizeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input is float data type."); AddOutput("Out", "(Tensor) Output of quantized low level tensor, " "but also saved as float data type."); AddOutput("OutScale", "(Tensor) Current channel wise scale"); AddAttr("bit_length", "(int, default 8)") .SetDefault(8) .AddCustomChecker([](const int& bit_length) { PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16, "'bit_length' should be between 1 and 16."); }); AddComment(R"DOC( The scale of FakeChannelWiseQuantize operator is a vector. In detail, each channel of the input X has a scale value. $$scale_c = max(abs(X_c))$$ $$range = 2^{bit\_length - 1} - 1$$ $$Out_c = round(\frac{X_c * range} {scale_c})$$ In above three formulas, the range value of c is as follow: $$0 \leq c \lt \ the\ channel\ number\ of\ X$$ )DOC"); } }; class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel { public: FakeQuantizeRangeAbsMaxOp(const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FakeQuantizeRangeAbsMaxOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("Out"), "Output(Out) of FakeQuantizeRangeAbsMaxOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("OutScale"), "Output(OutScale) of FakeQuantizeRangeAbsMaxOp should not be null"); if (ctx->HasOutput("OutScales")) { int window_size = ctx->Attrs().Get("window_size"); ctx->SetOutputDim("OutScales", {window_size}); } ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("OutScale", {1}); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(ctx.Input("X")->type(), ctx.device_context()); } }; class FakeQuantizeRangeAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input is float data type."); AddInput("InScale", "Last scale."); AddInput("Iter", "Global step iteration.").AsDispensable(); AddOutput("Out", "(Tensor) Output of quantized low level tensor."); AddOutput("OutScale", " Current scale"); AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable(); AddAttr("window_size", "(int, default 10000) window range size.") .SetDefault(10000); AddAttr("bit_length", "(int, default 8), quantization bit number.") .SetDefault(8) .AddCustomChecker([](const int& bit_length) { PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16, "'bit_length' should be between 1 and 16."); }); AddAttr("is_test", "(bool, default false) Set to true for inference only, false " "for training. Some layers may run faster when this is true.") .SetDefault(false); AddComment(R"DOC( FakeQuantize operator is used in static quantization. $$scale = max(max(abs(x)), history_abs_max)$$ $$range = 2^{bit_length - 1} - 1$$ $$Out = round(X/scale * range)$$ )DOC"); } }; class FakeQuantOrWithDequantMovingAverageAbsMaxOp : public framework::OperatorWithKernel { public: FakeQuantOrWithDequantMovingAverageAbsMaxOp( const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FakeQuantOrWithDequantMovingAverageAbsMaxOp " "should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of FakeQuantOrWithDequantMovingAverageAbsMaxOp " "should not be null."); PADDLE_ENFORCE( ctx->HasOutput("OutScale"), "Output(OutScale) of FakeQuantOrWithDequantMovingAverageAbsMaxOp " "should not be null"); if (ctx->HasOutput("OutState")) { ctx->SetOutputDim("OutState", {1}); } if (ctx->HasOutput("OutAccum")) { ctx->SetOutputDim("OutAccum", {1}); } ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("OutScale", {1}); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(ctx.Input("X")->type(), ctx.device_context()); } }; class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input is float data type."); AddInput("InScale", "Last scale."); AddInput("InAccum", "Last accum.").AsDispensable(); AddInput("InState", "Last state.").AsDispensable(); AddOutput("Out", "(Tensor) Output of quantized low level tensor."); AddOutput("OutScale", " Current scale"); AddOutput("OutState", "(Tensor) state buffer.").AsDispensable(); AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable(); AddAttr("moving_rate", "(float, default 0.9) moving rate.") .SetDefault(0.9); AddAttr("bit_length", "(int, default 8), quantization bit number.") .SetDefault(8) .AddCustomChecker([](const int& bit_length) { PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16, "'bit_length' should be between 1 and 16."); }); AddAttr("is_test", "(bool, default false) Set to true for inference only, false " "for training. Some layers may run faster when this is true.") .SetDefault(false); AddComment(R"DOC( This is a Base Op which support FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp FakeQuantMovingAverageAbsMaxOp operator is used in static quantization. $$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$ $$range = 2^{bit\_length - 1} - 1$$ $$Out = round(X/scale * range)$$ FakeQuantDequantMovingAverageAbsMaxOp operator do the moving_average_abs_max op quant and then dequant. $$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$ $$range = 2^{bit\_length - 1} - 1$$ $$Out = round(X/scale * range) * scale / range$$ )DOC"); } }; class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE( ctx->HasInput("X"), "Input(X) of MovingAverageAbsMaxScaleOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("Out"), "Output(Out) of MovingAverageAbsMaxScaleOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("OutScale"), "Output(OutScale) of MovingAverageAbsMaxScaleOp" "should not be null"); if (ctx->HasOutput("OutState")) { ctx->SetOutputDim("OutState", {1}); } if (ctx->HasOutput("OutAccum")) { ctx->SetOutputDim("OutAccum", {1}); } ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->SetOutputDim("OutScale", {1}); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(ctx.Input("X")->type(), ctx.GetPlace()); } }; class MovingAverageAbsMaxScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Input is float data type."); AddInput("InAccum", "Last accum.").AsDispensable(); AddInput("InState", "Last state.").AsDispensable(); AddOutput("Out", "(Tensor) Output tensor is just equivalent to the input tensor."); AddOutput("OutScale", " Current scale"); AddOutput("OutState", "(Tensor) state buffer.").AsDispensable(); AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable(); AddAttr("moving_rate", "(float, default 0.9) moving rate.") .SetDefault(0.9); AddAttr("is_test", "(bool, default false) Set true for inference only and false " "for training. Some layers may run faster when this is true.") .SetDefault(false); AddComment(R"DOC( MovingAverageAbsMaxScale operator is only used for calculating the quantization scale. And it will not quantize the input tensor. $$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$ $$Out = X$$ )DOC"); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; using CPU = paddle::platform::CPUDeviceContext; REGISTER_OPERATOR(fake_quantize_abs_max, ops::FakeQuantizeAbsMaxOp, ops::FakeQuantizeAbsMaxOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max, ops::FakeQuantizeAbsMaxKernel); REGISTER_OPERATOR(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp, ops::FakeQuantizeRangeAbsMaxOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxKernel); REGISTER_OPERATOR(fake_quantize_moving_average_abs_max, ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp, ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max, ops::FakeQuantizeMovingAverageAbsMaxKernel); REGISTER_OPERATOR(fake_quantize_dequantize_moving_average_abs_max, ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp, ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL( fake_quantize_dequantize_moving_average_abs_max, ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel); REGISTER_OPERATOR(fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxOp, ops::FakeChannelWiseQuantizeAbsMaxOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxKernel); REGISTER_OPERATOR(moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp, ops::MovingAverageAbsMaxScaleOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleKernel);