# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') if cuda_visible_devices is None or cuda_visible_devices == "": os.environ['CUDA_VISIBLE_DEVICES'] = '0' else: os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices.split(',')[0] import unittest import paddle import paddle.distributed.fleet as fleet import paddle.fluid as fluid import paddle.nn as nn class LinearNet(nn.Layer): def __init__(self): super().__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) class TestFleetDygraphSingle(unittest.TestCase): def setUp(self): os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36213" os.environ["PADDLE_CURRENT_ENDPOINTS"] = "127.0.0.1:36213" os.environ["PADDLE_TRAINERS_NUM"] = "1" os.environ["PADDLE_TRAINER_ID"] = "0" def test_dygraph_single(self): paddle.disable_static() paddle.distributed.init_parallel_env() layer = LinearNet() loss_fn = nn.MSELoss() adam = paddle.optimizer.Adam( learning_rate=0.001, parameters=layer.parameters() ) adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) for step in range(2): inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) loss.backward() adam.step() adam.clear_grad() class TestFleetBaseSingleRunCollective(unittest.TestCase): def setUp(self): pass def gen_data(self): return { "x": np.random.random(size=(128, 32)).astype('float32'), "y": np.random.randint(2, size=(128, 1)).astype('int64'), } def test_single_run_collective_minimize(self): paddle.enable_static() input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32') input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64') fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh') prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax') cost = paddle.nn.functional.cross_entropy( input=prediction, label=input_y, reduction='none', use_softmax=False ) avg_cost = paddle.mean(x=cost) fleet.init(is_collective=True) optimizer = fluid.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer) optimizer.minimize(avg_cost) place = ( fluid.CUDAPlace(0) if paddle.fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) exe.run(paddle.static.default_startup_program()) for i in range(10): cost_val = exe.run(feed=self.gen_data(), fetch_list=[avg_cost.name]) print("cost of step[{}] = {}".format(i, cost_val)) class TestFleetBaseSingleRunPS(unittest.TestCase): def setUp(self): pass def gen_data(self): return { "x": np.random.random(size=(128, 32)).astype('float32'), "y": np.random.randint(2, size=(128, 1)).astype('int64'), } def test_single_run_ps_minimize(self): paddle.enable_static() input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32') input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64') fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh') prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax') cost = paddle.nn.functional.cross_entropy( input=prediction, label=input_y, reduction='none', use_softmax=False ) avg_cost = paddle.mean(x=cost) fleet.init() strategy = paddle.distributed.fleet.DistributedStrategy() optimizer = fluid.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) if fleet.is_server(): fleet.init_server() fleet.run_server() elif fleet.is_worker(): place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(paddle.static.default_startup_program()) step = 10 for i in range(step): cost_val = exe.run( program=fluid.default_main_program(), feed=self.gen_data(), fetch_list=[avg_cost.name], ) print( "worker_index: %d, step%d cost = %f" % (fleet.worker_index(), i, cost_val[0]) ) if __name__ == "__main__": unittest.main()