# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid import Conv2D, Pool2D, FC, core from paddle.fluid.dygraph.base import to_variable class SimpleImgConvPool(fluid.Layer): def __init__(self, name_scope, num_channels, num_filters, filter_size, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, act=None, use_cudnn=False, param_attr=None, bias_attr=None): super(SimpleImgConvPool, self).__init__(name_scope) self._conv2d = Conv2D( self.full_name(), num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation, groups=conv_groups, param_attr=None, bias_attr=None, use_cudnn=use_cudnn) self._pool2d = Pool2D( self.full_name(), pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, pool_padding=pool_padding, global_pooling=global_pooling, use_cudnn=use_cudnn) def forward(self, inputs): x = self._conv2d(inputs) x = self._pool2d(x) return x class MNIST(fluid.Layer): def __init__(self, name_scope): super(MNIST, self).__init__(name_scope) self._simple_img_conv_pool_1 = SimpleImgConvPool( self.full_name(), 1, 20, 5, 2, 2, act="relu") self._simple_img_conv_pool_2 = SimpleImgConvPool( self.full_name(), 20, 50, 5, 2, 2, act="relu") pool_2_shape = 50 * 4 * 4 SIZE = 10 scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5 self._fc = FC(self.full_name(), 10, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale)), act="softmax") def forward(self, inputs): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) x = self._fc(x) return x class TestDygraphCheckpoint(unittest.TestCase): def reader_decorator(self, reader): def _reader_imple(): for item in reader(): image = np.array(item[0]).reshape(1, 28, 28) label = np.array(item[1]).astype('int64').reshape(1) yield image, label return _reader_imple def test_save_load_persistables(self): seed = 90 epoch_num = 1 batch_size = 128 with fluid.dygraph.guard(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed mnist = MNIST("mnist") sgd = SGDOptimizer(learning_rate=1e-3) batch_py_reader = fluid.io.PyReader(capacity=1) batch_py_reader.decorate_sample_list_generator( paddle.batch( self.reader_decorator(paddle.dataset.mnist.train()), batch_size=batch_size, drop_last=True), places=fluid.CPUPlace()) dy_param_init_value = {} for epoch in range(epoch_num): for batch_id, data in enumerate(batch_py_reader()): img = data[0] label = data[1] label.stop_gradient = True cost = mnist(img) loss = fluid.layers.cross_entropy(cost, label) avg_loss = fluid.layers.mean(loss) dy_out = avg_loss.numpy() avg_loss.backward() sgd.minimize(avg_loss) fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir") mnist.clear_gradients() for param in mnist.parameters(): dy_param_init_value[param.name] = param.numpy() restore, _ = fluid.dygraph.load_persistables("save_dir") mnist.load_dict(restore) self.assertEqual(len(dy_param_init_value), len(restore)) for ky, value in restore.items(): self.assertTrue( np.allclose(value.numpy(), dy_param_init_value[ value.name])) self.assertTrue(np.isfinite(value.numpy().all())) self.assertFalse(np.isnan(value.numpy().any())) if batch_id > 10: break if __name__ == '__main__': unittest.main()