/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/operators/bmm_op.h" #include #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/backward.h" #include "paddle/phi/infermeta/binary.h" namespace paddle { namespace operators { class BmmOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(data_type, ctx.device_context()); } }; class BmmOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The first input tensor of Bmm op."); AddInput("Y", "(Tensor), The second input tensor of Bmm op."); AddOutput("Out", "(Tensor), The output tensor of Bmm op."); AddComment(R"DOC( The Bmm operator is used to perform batched matrix multiplication over the last two dimensions of the input tensors `X` and `Y` which are both 3-dimentionsal. Examples: - X: [B, M, K], Y: [B, K, N] => Out: [B, M, N] )DOC"); } }; class BmmOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), ctx.device_context()); } }; template class BmmOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr retv) const override { retv->SetType("bmm_grad"); retv->SetInput("X", this->Input("X")); retv->SetInput("Y", this->Input("Y")); retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(bmm, BmmInferShapeFunctor, PD_INFER_META(phi::BmmInferMeta)); DECLARE_INFER_SHAPE_FUNCTOR(bmm_grad, BmmGradInferShapeFunctor, PD_INFER_META(phi::BmmGradInferMeta)); REGISTER_OPERATOR(bmm, ops::BmmOp, ops::BmmOpMaker, ops::BmmOpGradMaker, ops::BmmOpGradMaker, BmmInferShapeFunctor); REGISTER_OPERATOR(bmm_grad, ops::BmmOpGrad, BmmGradInferShapeFunctor);