# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import numpy as np from paddle.vision.datasets import voc2012, VOC2012 # VOC2012 is too large for unittest to download, stub a small dataset here voc2012.VOC_URL = 'https://paddlemodels.bj.bcebos.com/voc2012_stub/VOCtrainval_11-May-2012.tar' voc2012.VOC_MD5 = '34cb1fe5bdc139a5454b25b16118fff8' class TestVOC2012Train(unittest.TestCase): def test_main(self): voc2012 = VOC2012(mode='train') self.assertTrue(len(voc2012) == 3) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 3) image, label = voc2012[idx] image = np.array(image) label = np.array(label) self.assertTrue(len(image.shape) == 3) self.assertTrue(len(label.shape) == 2) class TestVOC2012Valid(unittest.TestCase): def test_main(self): voc2012 = VOC2012(mode='valid') self.assertTrue(len(voc2012) == 1) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 1) image, label = voc2012[idx] image = np.array(image) label = np.array(label) self.assertTrue(len(image.shape) == 3) self.assertTrue(len(label.shape) == 2) class TestVOC2012Test(unittest.TestCase): def test_main(self): voc2012 = VOC2012(mode='test') self.assertTrue(len(voc2012) == 2) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 1) image, label = voc2012[idx] image = np.array(image) label = np.array(label) self.assertTrue(len(image.shape) == 3) self.assertTrue(len(label.shape) == 2) # test cv2 backend voc2012 = VOC2012(mode='test', backend='cv2') self.assertTrue(len(voc2012) == 2) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 1) image, label = voc2012[idx] self.assertTrue(len(image.shape) == 3) self.assertTrue(len(label.shape) == 2) with self.assertRaises(ValueError): voc2012 = VOC2012(mode='test', backend=1) if __name__ == '__main__': unittest.main()