Paddle的Python预测接口¶
Paddle目前使用Swig对其常用的预测接口进行了封装,使在Python环境下的预测接口更加简单。 在Python环境下预测结果,主要分为以下几个步骤。
- 读入解析训练配置
- 构造GradientMachine
- 准备数据
- 预测
典型的预测代码如下,使用mnist手写识别作为样例。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | # Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle, DataProviderWrapperConverter
from paddle.trainer.PyDataProviderWrapper import DenseSlot
from paddle.trainer.config_parser import parse_config
TEST_DATA = [[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.215686,
0.533333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.67451,
0.992157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.070588, 0.886275,
0.992157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.192157, 0.070588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.670588, 0.992157, 0.992157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.117647, 0.933333, 0.858824, 0.313725, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.090196, 0.858824, 0.992157, 0.831373, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.141176,
0.992157, 0.992157, 0.611765, 0.054902, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.258824, 0.992157, 0.992157,
0.529412, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.368627, 0.992157, 0.992157, 0.419608, 0.003922, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.094118, 0.835294, 0.992157, 0.992157, 0.517647, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.603922, 0.992157,
0.992157, 0.992157, 0.603922, 0.545098, 0.043137, 0, 0, 0, 0, 0, 0, 0, 0.447059, 0.992157, 0.992157,
0.956863, 0.062745, 0, 0, 0, 0, 0, 0, 0, 0, 0.011765, 0.666667, 0.992157, 0.992157, 0.992157, 0.992157,
0.992157, 0.745098, 0.137255, 0, 0, 0, 0, 0, 0.152941, 0.866667, 0.992157, 0.992157, 0.521569, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.070588, 0.992157, 0.992157, 0.992157, 0.803922, 0.352941, 0.745098, 0.992157,
0.945098, 0.317647, 0, 0, 0, 0, 0.580392, 0.992157, 0.992157, 0.764706, 0.043137, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0.070588, 0.992157, 0.992157, 0.776471, 0.043137, 0, 0.007843, 0.27451, 0.882353, 0.941176, 0.176471,
0, 0, 0.180392, 0.898039, 0.992157, 0.992157, 0.313725, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.070588, 0.992157,
0.992157, 0.713725, 0, 0, 0, 0, 0.627451, 0.992157, 0.729412, 0.062745, 0, 0.509804, 0.992157, 0.992157,
0.776471, 0.035294, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.494118, 0.992157, 0.992157, 0.968627, 0.168627, 0, 0,
0, 0.423529, 0.992157, 0.992157, 0.364706, 0, 0.717647, 0.992157, 0.992157, 0.317647, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.533333, 0.992157, 0.984314, 0.945098, 0.603922, 0, 0, 0, 0.003922, 0.466667, 0.992157,
0.988235, 0.976471, 0.992157, 0.992157, 0.788235, 0.007843, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.686275,
0.882353, 0.364706, 0, 0, 0, 0, 0, 0, 0.098039, 0.588235, 0.992157, 0.992157, 0.992157, 0.980392,
0.305882, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.101961, 0.67451, 0.321569, 0, 0, 0, 0, 0, 0, 0, 0.105882,
0.733333, 0.976471, 0.811765, 0.713725, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.65098, 0.992157,
0.321569, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25098, 0.007843, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0.94902, 0.219608, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.968627,
0.764706, 0.152941, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.498039,
0.25098, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.298039, 0.333333, 0.333333, 0.333333, 0.337255, 0.333333,
0.333333, 0.109804, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.027451, 0.223529, 0.776471,
0.964706, 0.988235, 0.988235, 0.988235, 0.992157, 0.988235, 0.988235, 0.780392, 0.098039, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.14902, 0.698039, 0.988235, 0.992157, 0.988235, 0.901961, 0.87451,
0.568627, 0.882353, 0.976471, 0.988235, 0.988235, 0.501961, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.188235, 0.647059, 0.988235, 0.988235, 0.745098, 0.439216, 0.098039, 0, 0, 0, 0.572549, 0.988235,
0.988235, 0.988235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0.933333, 0.992157, 0.941176,
0.247059, 0, 0, 0, 0, 0, 0, 0.188235, 0.898039, 0.992157, 0.992157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.039216, 0.639216, 0.933333, 0.988235, 0.913725, 0.278431, 0, 0, 0, 0, 0, 0, 0, 0.113725, 0.843137,
0.988235, 0.988235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.235294, 0.988235, 0.992157, 0.988235, 0.815686,
0.07451, 0, 0, 0, 0, 0, 0, 0, 0.333333, 0.988235, 0.988235, 0.552941, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.211765, 0.878431, 0.988235, 0.992157, 0.701961, 0.329412, 0.109804, 0, 0, 0, 0, 0, 0, 0, 0.698039,
0.988235, 0.913725, 0.145098, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.188235, 0.890196, 0.988235, 0.988235,
0.745098, 0.047059, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.882353, 0.988235, 0.568627, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0.2, 0.933333, 0.992157, 0.992157, 0.992157, 0.447059, 0.294118, 0, 0, 0, 0, 0, 0, 0, 0, 0.447059,
0.992157, 0.768627, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.623529, 0.988235, 0.988235, 0.988235, 0.988235,
0.992157, 0.47451, 0, 0, 0, 0, 0, 0, 0, 0.188235, 0.933333, 0.87451, 0.509804, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0.992157, 0.988235, 0.937255, 0.792157, 0.988235, 0.894118, 0.082353, 0, 0, 0, 0, 0, 0,
0.027451, 0.647059, 0.992157, 0.654902, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.623529, 0.988235, 0.913725,
0.329412, 0.376471, 0.184314, 0, 0, 0, 0, 0, 0, 0.027451, 0.513725, 0.988235, 0.635294, 0.219608, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.196078, 0.929412, 0.988235, 0.988235, 0.741176, 0.309804, 0, 0, 0, 0,
0, 0, 0.529412, 0.988235, 0.678431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.223529, 0.992157,
0.992157, 1, 0.992157, 0.992157, 0.992157, 0.992157, 1, 0.992157, 0.992157, 0.882353, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.023529, 0.478431, 0.654902, 0.658824, 0.952941, 0.988235, 0.988235,
0.988235, 0.992157, 0.988235, 0.729412, 0.278431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.196078, 0.647059, 0.764706, 0.764706, 0.768627, 0.580392, 0.047059, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]]]
def main():
conf = parse_config("./mnist_model/trainer_config.conf.norm", "")
print conf.data_config.load_data_args
network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config)
assert isinstance(network, swig_paddle.GradientMachine) # For code hint.
network.loadParameters("./mnist_model/")
converter = DataProviderWrapperConverter(False, [DenseSlot(784)])
inArg = converter(TEST_DATA)
print network.forwardTest(inArg)
if __name__ == '__main__':
swig_paddle.initPaddle("--use_gpu=0")
main()
|
主要的软件包为py_paddle.swig_paddle,这个软件包文档相对完善。可以使用python的 help()
函数查询文档。主要步骤为:
在程序开始阶段,使用命令行参数初始化paddle
在98行载入paddle的训练文件。读取config
在100行创建神经网络,并在83行载入参数。
- 103行创建一个从工具类,用来转换数据。
- swig_paddle接受的原始数据是C++的Matrix,也就是直接写内存的float数组。
- 这个接口并不用户友好。所以,我们提供了一个工具类DataProviderWrapperConverter.
- 这个工具类接收和PyDataProviderWrapper一样的输入数据,请参考PyDataProviderWrapper的文档。
在第105行执行预测。forwardTest是一个工具类,直接提取出神经网络Output层的输出结果。典型的输出结果为:
[{'id': None, 'value': array([[ 5.53018653e-09, 1.12194102e-05, 1.96644767e-09,
1.43630644e-02, 1.51111044e-13, 9.85625684e-01,
2.08823112e-10, 2.32777140e-08, 2.00186201e-09,
1.15501715e-08],
[ 9.99982715e-01, 1.27787406e-10, 1.72296313e-05,
1.49316648e-09, 1.36540484e-11, 6.93137714e-10,
2.70634608e-08, 3.48565123e-08, 5.25639710e-09,
4.48684503e-08]], dtype=float32)}]
其中,value即为softmax层的输出。由于数据是两个,所以输出的value。