# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect from os import path import paddle from . import core, unique_name from .framework import _apply_pass, OpProtoHolder from .proto import framework_pb2 try: from .proto import pass_desc_pb2 except ModuleNotFoundError: import sys sys.path.append(path.join(path.dirname(__file__), 'proto')) from .proto import pass_desc_pb2 def get_data_vars(program): data_vars = [] for var_name, var in program.global_block().vars.items(): if var.is_data: data_vars.append(var_name) return data_vars def _update_grad_persistable(main_program): grad_merge_attr_name = "grad_merge_cond_name" op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName() has_grad_merge = False has_persistable_grad_var = False grad_vars = [] for block_id in range(main_program.num_blocks): block = main_program.block(block_id) for op in block.ops: if grad_merge_attr_name in op.attr_names: has_grad_merge = True if op_role_var_attr_name not in op.attr_names: continue p_g = op.attr(op_role_var_attr_name) for g in p_g[1::2]: g_var = block._find_var_recursive(g) if g_var is None: continue grad_vars.append(g_var) if g_var.persistable: has_persistable_grad_var = True if has_grad_merge and has_persistable_grad_var: for g_var in grad_vars: g_var.persistable = True def apply_build_strategy(main_program, startup_program, build_strategy, pass_attrs): def update_attr(attrs, attr_types, name, value, typ=None): if name not in attrs: attrs[name] = value if typ: attr_types[name] = typ def apply_pass(name): attrs = dict(pass_attrs) attr_types = {} update_attr(attrs, attr_types, "nranks", 1, "size_t") update_attr(attrs, attr_types, "use_cuda", False, "bool") # TODO(zjl): how to skip fetch variables ? update_attr(attrs, attr_types, "mem_opt_skip_vars", get_data_vars(main_program), "list[str]") _apply_pass(main_program, startup_program, name, attrs, attr_types) _update_grad_persistable(main_program) use_cuda = pass_attrs.get("use_cuda", False) build_strategy = build_strategy._copy() if build_strategy.sync_batch_norm: apply_pass("sync_batch_norm_pass") build_strategy.sync_batch_norm = False if build_strategy.fuse_relu_depthwise_conv and use_cuda: apply_pass("fuse_relu_depthwise_conv_pass") build_strategy.fuse_relu_depthwise_conv = False if build_strategy.fuse_bn_act_ops and use_cuda: apply_pass("fuse_bn_act_pass") build_strategy.fuse_bn_act_ops = False if build_strategy.fuse_bn_add_act_ops and use_cuda: apply_pass("fuse_bn_add_act_pass") build_strategy.fuse_bn_add_act_ops = False if build_strategy.enable_auto_fusion and use_cuda: apply_pass("fusion_group_pass") build_strategy.enable_auto_fusion = False if build_strategy.fuse_gemm_epilogue: apply_pass("fuse_gemm_epilogue_pass") build_strategy.fuse_gemm_epilogue = False if build_strategy.fuse_elewise_add_act_ops: apply_pass("fuse_elewise_add_act_pass") build_strategy.fuse_elewise_add_act_ops = False if build_strategy.fuse_all_optimizer_ops: apply_pass([ "coalesce_grad_tensor_pass", "fuse_adam_op_pass", "fuse_sgd_op_pass", "fuse_momentum_op_pass", ]) build_strategy.fuse_all_optimizer_ops = False # TODO(zjl): support fuse all reduce ops if build_strategy.cache_runtime_context: apply_pass("runtime_context_cache_pass") build_strategy.cache_runtime_context = False if build_strategy.enable_addto and use_cuda: # NOTE: how to get fetch vars to skip memory optimization? apply_pass("inplace_addto_op_pass") build_strategy.enable_addto = False if build_strategy.enable_inplace: apply_pass("buffer_shared_inplace_pass") build_strategy.enable_inplace = False build_strategy._clear_finalized() return build_strategy class RegisterPassHelper(object): _register_helpers = list() def __init__(self, pass_pairs, pass_type=str(), input_specs=dict()): self._pass_type = pass_type self._pass_pairs = pass_pairs self._input_specs = input_specs RegisterPassHelper._register_helpers.append(self) def _get_args_from_func(self, func): args = list() arg_specs = inspect.getfullargspec(func) for arg_name in arg_specs.args: input_spec = self._input_specs.get(arg_name) if isinstance(input_spec, paddle.static.InputSpec): args.append( PassDesc.VarHelper(arg_name, input_spec.shape, input_spec.dtype)) elif isinstance(input_spec, paddle.ParamAttr): args.append(paddle.ParamAttr(arg_name)) else: args.append(PassDesc.VarHelper(arg_name, [-1])) return args def _prune_program_desc(self, ops): for op_desc in ops: default_attrs = core.get_op_attrs_default_value( paddle.compat.to_bytes(op_desc.type)) remove_attrs = list() for attr in op_desc.attrs: # attr must not in if attr.name not in [ "op_namescope", "op_callstack", "op_device" ]: attr_list_fields = attr.ListFields() # attr format must be: name, type, value if len(attr_list_fields) == 3: attr_value = attr.ListFields()[-1][-1] default_attr_value = default_attrs.get(attr.name) # value must not default if default_attr_value != attr_value: continue remove_attrs.append(attr) for attr in remove_attrs: op_desc.attrs.remove(attr) def _func_to_program_desc(self, func, ops): vars = list() program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(program, startup_program): args = self._get_args_from_func(func) vars.extend(args) outs = func(*args) if not isinstance(outs, (list, tuple)): outs = [outs] for out in outs: if isinstance(out, PassDesc.OpHelper): op_outs = out.Outputs() if len(op_outs) != 1: raise ValueError( "Operator '{}' has multiple outputs, please specify one output variable." .format(out._type)) for op_out in op_outs.values(): vars.extend(op_out) else: vars.append(out) block_desc = program.current_block().desc for i in range(block_desc.op_size()): ops.add().ParseFromString(block_desc.op(i).serialize_to_string()) self._prune_program_desc(ops) return vars, program.current_block().ops def _convert_vars_to_pass_desc(self, patterns, replaces, desc): def _add_element_conditions(conditions, elements): for element in elements: if element._condition: conditions.append(element._condition) _add_element_conditions(conditions, element._elements) for (pattern, replace) in zip(patterns, replaces): # Convert maps of inputs and outputs. var_map = desc.var_maps.add() var_map.pattern_var = pattern.name var_map.replace_var = replace.name conditions = desc.var_attr_conditions # Convert shape condition. if pattern.name in self._input_specs: condition = conditions.add() pattern.Attr("shape")._to_pass_desc_attr(condition.attr) condition.condition_value.name = "" condition.condition_value.type = framework_pb2.AttrType.LONGS condition.condition_value.longs.extend(pattern.shape) condition.type = pass_desc_pb2.PassDesc.ConditionType.kEQ # Convert attr conditions. if PassDesc.VarHelper == pattern.__class__: for attr in pattern._attrs.values(): _add_element_conditions(conditions, [attr]) def _convert_ops_to_pass_desc(self, patterns, replaces, desc): for replace in replaces: if isinstance(replace, PassDesc.OpHelper): for attr in replace._attrs.values(): # Convert attr maps. mapped = attr._mapped if inspect.isfunction(mapped): mapped = mapped(patterns) attr_map = desc.op_attr_maps.add() mapped._to_pass_desc_attr(attr_map.pattern_attr) attr._to_pass_desc_attr(attr_map.replace_attr) if mapped._operation is not None: attr_map.operation.CopyFrom(mapped._operation) def SerializeMultiPassDesc(self): switch_static_mode = paddle.in_dynamic_mode() if switch_static_mode: paddle.enable_static() multi_pass_desc = pass_desc_pb2.MultiPassDesc() multi_pass_desc.pass_type = self._pass_type # Traverse all pass pairs and convert them to PassDesc data. # Here need to add cache in the future. for (pattern, replace) in self._pass_pairs: pass_desc = multi_pass_desc.pass_descs.add() # Convert ProgramDescs of pattern and replace subgraphs. pattern_vars, pattern_ops = self._func_to_program_desc( pattern, pass_desc.pattern) replace_vars, replace_ops = self._func_to_program_desc( replace, pass_desc.replace) self._convert_vars_to_pass_desc(pattern_vars, replace_vars, pass_desc) self._convert_ops_to_pass_desc(pattern_ops, replace_ops, pass_desc) if switch_static_mode: paddle.disable_static() return multi_pass_desc.SerializeToString() class PassDesc(object): class AttrHelper(object): def __init__(self, obj, name, element_index=None): self._obj = obj self._name = name self._operation_type = None self._element_index = element_index self._elements = list() self._operation = None self._condition = None self._mapped = None def __getitem__(self, index): element = PassDesc.AttrHelper(self._obj, self._name, element_index=index) self._elements.append(element) return element def _to_pass_desc_attr(self, pass_desc_attr): if isinstance(self._obj, PassDesc.VarHelper): pass_desc_attr.role = pass_desc_pb2.PassDesc.RoleType.kVariable pass_desc_attr.var_name = self._obj.name else: pass_desc_attr.role = pass_desc_pb2.PassDesc.RoleType.kOperator pass_desc_attr.op_index = self._obj._index pass_desc_attr.name = self._name if self._operation_type is not None: pass_desc_attr.operation = self._operation_type if self._element_index is not None: pass_desc_attr.element_index = self._element_index def _to_op_desc_attr(self, value, op_desc_attr): op_desc_attr.name = "" if isinstance(value, int): op_desc_attr.type = framework_pb2.AttrType.INT op_desc_attr.i = value else: raise NotImplementedError("Unimplemented transform operation.") def _clone_with_operation(self, type, value=None): attr = PassDesc.AttrHelper(self._obj, self._name, self._element_index) self._elements.append(attr) if value is None: attr._operation_type = type return attr operation = pass_desc_pb2.PassDesc.Operation() operation.type = type if isinstance(value, PassDesc.AttrHelper): value._to_pass_desc_attr(operation.attr) else: self._to_op_desc_attr(value, operation.value) attr._operation = operation attr._operation_type = self._operation_type return attr def __sub__(self, value): return self._clone_with_operation( pass_desc_pb2.PassDesc.OperationType.kSub, value) def __add__(self, value): return self._clone_with_operation( pass_desc_pb2.PassDesc.OperationType.kAdd, value) def Mod(self, value): return self._clone_with_operation( pass_desc_pb2.PassDesc.OperationType.kMod, value) def Size(self): return self._clone_with_operation( pass_desc_pb2.PassDesc.OperationType.kSize) def _set_with_condition(self, type, value): condition = pass_desc_pb2.PassDesc.AttrCondition() self._to_pass_desc_attr(condition.attr) condition.type = type if isinstance(value, PassDesc.AttrHelper): value._to_pass_desc_attr(condition.condition_attr) else: self._to_op_desc_attr(value, condition.condition_value) if self._operation: condition.operation.CopyFrom(self._operation) self._condition = condition def EQ(self, value): self._set_with_condition(pass_desc_pb2.PassDesc.ConditionType.kEQ, value) def MappedPattern(self, var=None, op=None, index=0, name=None, element_index=None): if all([var, op]): raise ValueError("Only mapped one of which var or op.") def mapped_var(pattern_ops): raise NotImplementedError( "Mapping to variable is not implemented.") def mapped_op(pattern_ops): ops = [o for o in pattern_ops if o._type == op] if len(ops) <= index: raise ValueError( "Index '{}' of operator '{}' is incorrect.".format( index, op)) return PassDesc.AttrHelper(ops[index], name, element_index=element_index) self._mapped = mapped_op if var is None else mapped_var class VarHelper(paddle.static.Variable): def __init__(self, *args, **kwargs): block = paddle.static.default_main_program().current_block() self._var = paddle.static.data(*args, **kwargs) self._attrs = dict() def __getattr__(self, name): return getattr(self._var, name) def Attr(self, name): attr = self._attrs.get(name) if attr is None: attr = PassDesc.AttrHelper(self, name) self._attrs[name] = attr return attr class OpHelper(object): def __init__(self, type=None): self._type = type def __getattr__(self, name): op = PassDesc.OpHelper(name) op.Init() return op def __call__(self, *args, **kwargs): if len(args) > 0: raise ValueError( "Each input argument needs to specify a parameter name.") for (in_name, in_args) in kwargs.items(): op_input = self._inputs.get(in_name) if op_input is None: raise ValueError( "Operator '{}' does not have input named '{}'.".format( self._type, in_name)) if isinstance(in_args, (list, tuple)): if len(in_args) == 0: raise ValueError( "Input '{}' of operator '{}' cannot be empty.". format(in_name, self._type)) else: in_args = [in_args] for in_arg in in_args: if isinstance(in_arg, PassDesc.OpHelper): op_outs = in_arg.Outputs() if len(op_outs) != 1: raise ValueError( "The size of outputs of operator '{}' is not equal 1, please specify one output variable." .format(in_arg._type)) for op_out in op_outs.values(): op_input.extend(op_out) else: op_input.append(in_arg) self._desc.set_input(in_name, [i.name for i in op_input]) block = paddle.static.default_main_program().current_block() for out_name, op_output in self._outputs.items(): op_output_name = unique_name.generate(self._type) op_output.append(block.create_var(name=op_output_name)) self._desc.set_output(out_name, [op_output_name]) return self def Init(self): block = paddle.static.default_main_program().current_block() self._proto = OpProtoHolder.instance().op_proto_map.get(self._type) if self._proto is None: raise AttributeError( "type object 'OpHelper' has no attribute '{}'".format( self._type)) self._index = len(block.ops) self._desc = block.desc.append_op() self._desc.set_type(self._type) self._attrs = dict() self._inputs = {i.name: list() for i in self._proto.inputs} self._outputs = {o.name: list() for o in self._proto.outputs} block.ops.append(self) def Attr(self, name): attr = self._attrs.get(name) if attr is None: attr = PassDesc.AttrHelper(self, name) self._attrs[name] = attr return attr def SetAttr(self, name, value): if isinstance(value, PassDesc.AttrHelper): self.Attr(name)._mapped = value else: self._desc._set_attr(name, value) def Output(self, name): output = self._outputs.get(name) if output is None: raise ValueError( "Operator '{}' does not have output named '{}'.".format( self._type, name)) return output def Outputs(self): return self._outputs def SetOutputs(self, **kwargs): for param, arg in kwargs.items(): if arg is None: self._desc.remove_output(param) else: self._desc.set_output(param, [arg.name]) OP = OpHelper() def RegisterPass(function=None, input_specs=dict()): """ The function decorator of Register Pass. Decorator @RegisterPass handles the function and register it into a core.Pass instance. Use name of function as Pass type. Args: function (callable): The function with return of callable pair(s) that represents the pattern subgraph and the replace subgraph. input_specs (dict[str, InputSpec]): Dict of InputSpec to specific the shape/dtype information of Tensor. Some operators limit the shape and dtype of datas when create subgraph with Paddle APIs. So user need specify InputSpec of data to ensure create a correctly subgraph. Of course, this argument is not limited to matching subgraph. The default is dict(). Returns: callables: Callable pair(s). Examples: .. code-block:: python import paddle from paddle.fluid.ir import RegisterPass @RegisterPass def multi_add_to_addn(): def pattern(x, y, z): return paddle.add(paddle.add(x, y), z) def replace(x, y, z): return paddle.add_n([x, y, z]) return pattern, replace """ def _is_pass_pair(check_pair): if isinstance(check_pair, (list, tuple)): if len(check_pair) == 2: if all(map(inspect.isfunction, check_pair)): return True return False def decorated(python_func): pass_type = python_func.__name__ signature = inspect.signature(python_func) if len(signature.parameters) > 0: raise NotImplementedError( "Pass function with parameter is not supported now.") elif len(signature.parameters) == 0: pass_pairs = python_func() if _is_pass_pair(pass_pairs): pass_pairs = [pass_pairs] elif not all(map(_is_pass_pair, pass_pairs)): raise ValueError( "Return value of Pass function must be (callable, callable)." ) helper = RegisterPassHelper(pass_pairs, pass_type, input_specs) core.register_pass(pass_type, helper.SerializeMultiPassDesc) return python_func if inspect.isfunction(function): return decorated(function) return decorated