// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "test_suite.h" // NOLINT DEFINE_string(modeldir, "", "Directory of the inference model."); namespace paddle_infer { std::map PrepareInput(int batch_size) { // init input data int channel = 3; int width = 320; int height = 320; paddle::test::Record image, im_shape, scale_factor; int input_num = batch_size * channel * width * height; int shape_num = batch_size * 2; std::vector image_data(input_num, 1); for (int i = 1; i < input_num + 1; ++i) { image_data[i] = i % 10 * 0.5; } std::vector im_shape_data(shape_num, 1); std::vector scale_factor_data(shape_num, 1); image.data = std::vector(image_data.begin(), image_data.end()); image.shape = std::vector{batch_size, channel, width, height}; image.type = paddle::PaddleDType::FLOAT32; im_shape.data = std::vector(im_shape_data.begin(), im_shape_data.end()); im_shape.shape = std::vector{batch_size, 2}; im_shape.type = paddle::PaddleDType::FLOAT32; scale_factor.data = std::vector(scale_factor_data.begin(), scale_factor_data.end()); scale_factor.shape = std::vector{batch_size, 2}; scale_factor.type = paddle::PaddleDType::FLOAT32; std::map input_data_map; input_data_map.insert({"image", image}); input_data_map.insert({"im_shape", im_shape}); input_data_map.insert({"scale_factor", scale_factor}); return input_data_map; } TEST(tensorrt_tester_ppyolo_mbv3, multi_thread4_trt_fp32_bz2) { int thread_num = 4; // init input data auto input_data_map = PrepareInput(2); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", FLAGS_modeldir + "/model.pdiparams"); config_no_ir.EnableUseGpu(100, 0); config_no_ir.SwitchIrOptim(false); // prepare inference config config.SetModel(FLAGS_modeldir + "/model.pdmodel", FLAGS_modeldir + "/model.pdiparams"); config.EnableUseGpu(100, 0); config.EnableTensorRtEngine( 1 << 25, 2, 3, paddle_infer::PrecisionType::kFloat32, false, false); LOG(INFO) << config.Summary(); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction( pred_pool_no_ir.Retrive(0), &input_data_map, &truth_output_data, 1); // get infer results from multi threads std::vector threads; services::PredictorPool pred_pool(config, thread_num); for (int i = 0; i < thread_num; ++i) { threads.emplace_back(paddle::test::SingleThreadPrediction, pred_pool.Retrive(i), &input_data_map, &infer_output_data, 2); } // thread join & check outputs for (int i = 0; i < thread_num; ++i) { LOG(INFO) << "join tid : " << i; threads[i].join(); CompareRecord(&truth_output_data, &infer_output_data, 0.18); // TODO(OliverLPH): precision set to 1e-2 since input is fake, change to // real input later } std::cout << "finish multi-thread test" << std::endl; } TEST(DISABLED_mkldnn_tester_ppyolo_mbv3, multi_thread4_mkl_bz2) { // TODO(OliverLPH): mkldnn multi thread will fail int thread_num = 4; // init input data auto input_data_map = PrepareInput(2); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/model.pdmodel", FLAGS_modeldir + "/model.pdiparams"); config_no_ir.DisableGpu(); config_no_ir.SwitchIrOptim(false); // prepare inference config config.SetModel(FLAGS_modeldir + "/model.pdmodel", FLAGS_modeldir + "/model.pdiparams"); config.DisableGpu(); config.EnableMKLDNN(); config.SetMkldnnCacheCapacity(10); config.SetCpuMathLibraryNumThreads(10); LOG(INFO) << config.Summary(); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction( pred_pool_no_ir.Retrive(0), &input_data_map, &truth_output_data, 1); // get infer results from multi threads std::vector threads; services::PredictorPool pred_pool(config, thread_num); for (int i = 0; i < thread_num; ++i) { threads.emplace_back(paddle::test::SingleThreadPrediction, pred_pool.Retrive(i), &input_data_map, &infer_output_data, 2); } // thread join & check outputs for (int i = 0; i < thread_num; ++i) { LOG(INFO) << "join tid : " << i; threads[i].join(); CompareRecord(&truth_output_data, &infer_output_data, 1e-4); } std::cout << "finish multi-thread test" << std::endl; } } // namespace paddle_infer int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); }