# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import _C_ops, _legacy_C_ops from paddle.fluid.data_feeder import check_variable_and_dtype from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode from paddle.fluid.layer_helper import LayerHelper __all__ = [] # TODO(qili93): remove this op after custom op and custom device # integrated and then move this op along with its code to plugin. def _npu_identity(x, format=-1): """ This OP takes in the Tensor :attr:`x` and change it to ouptut with aclFormat with int value. This API is only used for Ascend NPU. Args: x(Tensor): An input N-D Tensor with data type bool, float16, float32, float64, int32, int64, int16, int8, uint8. format(int): Storage data format of the output in aclFormat, default value is -1. Returns: Tensor: A Tensor with acl storage format on Ascend NPU. Examples: .. code-block:: python # required: npu import paddle x = paddle.ones(shape=[6]) y = paddle.incubate._npu_identity(x, 3) # ACL_FORMAT_NC1HWC0 = 3 # y.shape = [1, 1, 1, 1, 16] """ if in_dygraph_mode(): return _C_ops.npu_identity(x, format) if _in_legacy_dygraph(): return _legacy_C_ops.npu_identity(x, 'format', format) check_variable_and_dtype( x, 'x', [ 'bool', 'int8', 'uint8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64', ], 'npu_identity', ) helper = LayerHelper('npu_identity', **locals()) out = helper.create_variable_for_type_inference( dtype=x.dtype, stop_gradient=x.stop_gradient ) helper.append_op( type='npu_identity', inputs={'x': [x]}, outputs={'out': [out]}, attrs={'format': format}, ) return out