// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/vol2col.h" #include "paddle/phi/kernels/conv_kernel.h" #include "paddle/phi/kernels/cpu/conv_util.h" #include "paddle/phi/kernels/funcs/batch_norm_utils.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template void ConvKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& filter_t, const std::vector& strides, const std::vector& paddings_t, const std::string& padding_algorithm, int groups, const std::vector& dilations_t, const std::string& data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, DenseTensor* output) { std::vector paddings = paddings_t; std::vector dilations = dilations_t; DenseTensor filter = filter_t; // The filter will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. dev_ctx.template Alloc(output); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); DenseTensor transformed_input(input.type()); DenseTensor transformed_output(output->type()); if (channel_last) { ResizeToChannelFirst(dev_ctx, &input, &transformed_input); TransToChannelFirst(dev_ctx, &input, &transformed_input); ResizeToChannelFirst(dev_ctx, output, &transformed_output); } else { transformed_input = input; transformed_output = *output; } // update padding and dilation auto trans_in_dims = transformed_input.dims(); auto filter_dims = filter.dims(); DDim in_data_dims = slice_ddim(trans_in_dims, 2, trans_in_dims.size()); DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); const int batch_size = static_cast(transformed_input.dims()[0]); // filter_shape_vec: // {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w} std::vector filter_shape_vec(vectorize(filter.dims())); // output_shape_vec: // {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w} std::vector output_shape_vec(vectorize(transformed_output.dims())); // use col_shape in the im2col calculation // col_shape_vec: // {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, // o_d,o_h, o_w} size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = trans_in_dims[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } DDim col_shape(make_ddim(col_shape_vec)); // use col_matrix_shape in the gemm calculation // size: // (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d * o_h * // o_w) DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim); bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations); DenseTensor col; // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. DenseTensor col_matrix; if (is_expand) { // col = context.AllocateTmpTensor(col_shape, dev_ctx); col.Resize(col_shape); dev_ctx.template Alloc(&col); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } DDim in_matrix_shape = slice_ddim(transformed_input.dims(), 1, transformed_input.dims().size()); DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); DDim output_matrix_shape = { transformed_output.dims()[1], transformed_output.numel() / (transformed_output.dims()[0] * transformed_output.dims()[1])}; // convolution operator: im2col(or vol2col) + gemm int in_step = static_cast(transformed_input.dims()[1]) / groups; int out_step = static_cast(transformed_output.dims()[1]) / groups; paddle::operators::math::Vol2ColFunctor vol2col; paddle::operators::math:: Im2ColFunctor im2col; auto blas = phi::funcs::GetBlas(dev_ctx); for (int i = 0; i < batch_size; i++) { DenseTensor in_batch = transformed_input.Slice(i, i + 1).Resize(in_matrix_shape); DenseTensor out_batch = transformed_output.Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { DenseTensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col.ShareDataWith(in_slice); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { im2col(dev_ctx, in_slice, dilations, strides, std::vector{ paddings[0], paddings[2], paddings[1], paddings[3]}, &col); } else if (data_dim == 3U) { vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm DenseTensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); DenseTensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); blas.MatMul( filter_slice, false, col_matrix, false, T(1.0), &out_slice, T(0.0)); } } if (channel_last) { TransToChannelLast(dev_ctx, &transformed_output, output); } } } // namespace phi