import paddle.v2 as paddle def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, event.cost) def vgg_bn_drop(input): def conv_block(ipt, num_filter, groups, dropouts, num_channels=None): return paddle.layer.img_conv_group( input=ipt, num_channels=num_channels, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act=paddle.activation.Relu(), conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type=pooling.Max()) conv1 = conv_block(input, 64, 2, [0.3, 0], 3) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5) fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear()) bn = paddle.layer.batch_norm( input=fc1, act=paddle.activation.Relu(), layer_attr=ExtraAttr(drop_rate=0.5)) fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear()) return fc2 def main(): datadim = 3 * 32 * 32 classdim = 10 paddle.init(use_gpu=False, trainer_count=1) image = paddle.layer.data( name="image", type=paddle.data_type.dense_vector(datadim)) # net = vgg_bn_drop(image) out = paddle.layer.fc(input=image, size=classdim, act=paddle.activation.Softmax()) lbl = paddle.layer.data( name="label", type=paddle.data_type.integer_value(classdim)) cost = paddle.layer.classification_cost(input=out, label=lbl) parameters = paddle.parameters.create(cost) momentum_optimizer = paddle.optimizer.Momentum( momentum=0.9, regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128), learning_rate=0.1 / 128.0, learning_rate_decay_a=0.1, learning_rate_decay_b=50000 * 100, learning_rate_schedule='discexp', batch_size=128) trainer = paddle.trainer.SGD(update_equation=momentum_optimizer) trainer.train( reader=paddle.reader.batched( paddle.reader.shuffle( paddle.dataset.cifar.train10(), buf_size=3072), batch_size=128), cost=cost, num_passes=1, parameters=parameters, event_handler=event_handler, reader_dict={'image': 0, 'label': 1}, ) if __name__ == '__main__': main()