# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle def np_sgn(x: np.ndarray): if x.dtype == 'complex128' or x.dtype == 'complex64': x_abs = np.abs(x) eps = np.finfo(x.dtype).eps x_abs = np.maximum(x_abs, eps) out = x / x_abs else: out = np.sign(x) return out class TestSgnError(unittest.TestCase): def test_errors(self): # The input dtype of sgn must be float16, float32, float64,complex64,complex128. input2 = paddle.to_tensor( np.random.randint(-10, 10, size=[12, 20]).astype('int32')) input3 = paddle.to_tensor( np.random.randint(-10, 10, size=[12, 20]).astype('int64')) self.assertRaises(TypeError, paddle.sgn, input2) self.assertRaises(TypeError, paddle.sgn, input3) class TestSignAPI(unittest.TestCase): def setUp(self) -> None: self.support_dtypes = [ 'float16', 'float32', 'float64', 'complex64', 'complex128' ] if paddle.device.get_device() == 'cpu': self.support_dtypes = [ 'float32', 'float64', 'complex64', 'complex128' ] def test_dtype(self): for dtype in self.support_dtypes: x = paddle.to_tensor( np.random.randint(-10, 10, size=[12, 20, 2]).astype(dtype)) paddle.sgn(x) def test_complex(self): for dtype in ['complex64', 'complex128']: np_x = np.array([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]], dtype=dtype) x = paddle.to_tensor(np_x) z = paddle.sgn(x) np_z = z.numpy() z_expected = np_sgn(np_x) self.assertTrue(np.allclose(np_z, z_expected)) def test_float(self): for dtype in self.support_dtypes: np_x = np.random.randint(-10, 10, size=[12, 20, 2]).astype(dtype) x = paddle.to_tensor(np_x) z = paddle.sgn(x) np_z = z.numpy() z_expected = np_sgn(np_x) self.assertTrue(np.allclose(np_z, z_expected)) if __name__ == "__main__": unittest.main()