# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle paddle.enable_static() from op_test import OpTest import paddle.fluid.core as core def conv3dtranspose_forward_naive(input_, filter_, attrs): padding_algorithm = attrs['padding_algorithm'] if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]: raise ValueError( "Unknown Attr(padding_algorithm): '%s'. " "It can only be 'SAME' or 'VALID'." % str(padding_algorithm) ) if attrs['data_format'] == 'NHWC': input_ = np.transpose(input_, [0, 4, 1, 2, 3]) in_n, in_c, in_d, in_h, in_w = input_.shape f_c, f_out_c, f_d, f_h, f_w = filter_.shape groups = attrs['groups'] assert in_c == f_c out_c = f_out_c * groups sub_in_c = in_c // groups stride, pad, dilations = ( attrs['strides'], attrs['paddings'], attrs['dilations'], ) def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride): padding = [] for input_size, filter_size, stride_size in zip( input_shape, kernel_size, kernel_stride ): out_size = int((input_size + stride_size - 1) / stride_size) pad_sum = np.max( ((out_size - 1) * stride_size + filter_size - input_size, 0) ) pad_0 = int(pad_sum / 2) pad_1 = int(pad_sum - pad_0) padding.append(pad_0) padding.append(pad_1) return padding ksize = filter_.shape[2:5] if padding_algorithm == "VALID": pad = [0, 0, 0, 0, 0, 0] elif padding_algorithm == "SAME": dilations = [1, 1, 1] input_data_shape = input_.shape[2:5] pad = _get_padding_with_SAME(input_data_shape, ksize, stride) pad_d_0, pad_d_1 = pad[0], pad[0] pad_h_0, pad_h_1 = pad[1], pad[1] pad_w_0, pad_w_1 = pad[2], pad[2] if len(pad) == 6: pad_d_0, pad_d_1 = pad[0], pad[1] pad_h_0, pad_h_1 = pad[2], pad[3] pad_w_0, pad_w_1 = pad[4], pad[5] d_bolck_d = dilations[0] * (f_d - 1) + 1 d_bolck_h = dilations[1] * (f_h - 1) + 1 d_bolck_w = dilations[2] * (f_w - 1) + 1 out_d = (in_d - 1) * stride[0] + d_bolck_d out_h = (in_h - 1) * stride[1] + d_bolck_h out_w = (in_w - 1) * stride[2] + d_bolck_w out = np.zeros((in_n, out_c, out_d, out_h, out_w)) for n in range(in_n): for d in range(in_d): for i in range(in_h): for j in range(in_w): for g in range(groups): input_masked = input_[ n, g * sub_in_c : (g + 1) * sub_in_c, d, i, j ] # (c) input_masked = np.reshape( input_masked, (sub_in_c, 1, 1, 1) ) input_masked = np.tile(input_masked, (1, f_d, f_h, f_w)) for k in range(f_out_c): tmp_out = np.sum( input_masked * filter_[ g * sub_in_c : (g + 1) * sub_in_c, k, :, :, :, ], axis=0, ) d1, d2 = d * stride[0], d * stride[0] + d_bolck_d i1, i2 = i * stride[1], i * stride[1] + d_bolck_h j1, j2 = j * stride[2], j * stride[2] + d_bolck_w out[ n, g * f_out_c + k, d1 : d2 : dilations[0], i1 : i2 : dilations[1], j1 : j2 : dilations[2], ] += tmp_out out = out[ :, :, pad_d_0 : out_d - pad_d_1, pad_h_0 : out_h - pad_h_1, pad_w_0 : out_w - pad_w_1, ] if attrs['data_format'] == 'NHWC': out = np.transpose(out, [0, 2, 3, 4, 1]) return out class TestConv3DTransposeOp(OpTest): def setUp(self): # init as conv transpose self.use_cudnn = False self.check_no_input = False self.check_no_filter = False self.data_format = 'NCHW' self.pad = [0, 0, 0] self.padding_algorithm = "EXPLICIT" self.init_op_type() self.init_test_case() input_ = np.random.random(self.input_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32") self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { 'strides': self.stride, 'paddings': self.pad, 'padding_algorithm': self.padding_algorithm, 'dilations': self.dilations, 'groups': self.groups, 'use_cudnn': self.use_cudnn, 'data_format': self.data_format, } output = conv3dtranspose_forward_naive( input_, filter_, self.attrs ).astype("float32") self.outputs = {'Output': output} def test_check_output(self): if self.use_cudnn: place = core.CUDAPlace(0) self.check_output_with_place(place, atol=1e-5) else: self.check_output() def test_check_grad(self): if self.use_cudnn: place = core.CUDAPlace(0) self.check_grad_with_place( place, set(['Input', 'Filter']), 'Output', max_relative_error=0.03, ) else: self.check_grad( set(['Input', 'Filter']), 'Output', max_relative_error=0.03 ) def test_check_grad_no_filter(self): if self.use_cudnn: place = core.CUDAPlace(0) self.check_grad_with_place( place, ['Input'], 'Output', max_relative_error=0.03, no_grad_set=set(['Filter']), ) elif self.check_no_filter: self.check_grad( ['Input'], 'Output', max_relative_error=0.03, no_grad_set=set(['Filter']), ) def test_check_grad_no_input(self): if self.use_cudnn: place = core.CUDAPlace(0) self.check_grad_with_place( place, ['Filter'], 'Output', max_relative_error=0.03, no_grad_set=set(['Input']), ) elif self.check_no_input: self.check_grad( ['Filter'], 'Output', max_relative_error=0.03, no_grad_set=set(['Input']), ) def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [2, 3, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] def init_op_type(self): self.op_type = "conv3d_transpose" class TestWithSymmetricPad(TestConv3DTransposeOp): def init_test_case(self): self.check_no_input = True self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] class TestWithAsymmetricPad(TestConv3DTransposeOp): def init_test_case(self): self.pad = [1, 0, 1, 0, 1, 2] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] class TestWithSAMEPad(TestConv3DTransposeOp): def init_test_case(self): self.stride = [1, 1, 2] self.dilations = [1, 2, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 6] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 4] self.padding_algorithm = 'SAME' class TestWithVALIDPad(TestConv3DTransposeOp): def init_test_case(self): self.stride = [2, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 4, 3] self.padding_algorithm = 'VALID' class TestWithStride(TestConv3DTransposeOp): def init_test_case(self): self.check_no_filter = True self.pad = [1, 1, 1] self.stride = [2, 2, 2] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] class TestWithGroups(TestConv3DTransposeOp): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 2 self.input_size = [1, 2, 5, 5, 5] # NCHW f_c = self.input_size[1] self.filter_size = [f_c, 3, 3, 3, 3] class TestWithDilation(TestConv3DTransposeOp): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [2, 2, 2] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] class Test_NHWC(TestConv3DTransposeOp): def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 5, 5, 5, 2] # NDHWC f_c = self.input_size[-1] self.filter_size = [f_c, 6, 3, 3, 3] self.data_format = 'NHWC' # ------------ test_cudnn ------------ @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNN(TestConv3DTransposeOp): def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithSymmetricPad(TestWithSymmetricPad): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad): def init_test_case(self): self.pad = [1, 1, 1, 0, 0, 2] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 4, 4, 4] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithSAMEPad(TestWithSAMEPad): def init_test_case(self): self.stride = [1, 1, 2] self.dilations = [1, 2, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 4, 3] self.padding_algorithm = 'SAME' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithVALIDPad(TestWithVALIDPad): def init_test_case(self): self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] self.padding_algorithm = 'VALID' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithStride(TestWithStride): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [2, 2, 2] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 2, 5, 5, 5] # NCDHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3, 3] def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithGroups(TestWithGroups): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 2 self.input_size = [1, 2, 5, 5, 5] # NCHW f_c = self.input_size[1] self.filter_size = [f_c, 3, 3, 3, 3] def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" # Please Don't remove the following code. # Currently, CI use cudnn V5.0 which not support dilation conv. # class TestCUDNNWithDilation(TestWithDilation): # def init_test_case(self): # self.pad = [1, 1, 1] # self.stride = [2, 2, 2] # self.dilations = [2, 2, 2] # self.input_size = [2, 3, 5, 5, 5] # NCDHW # f_c = self.input_size[1] # self.filter_size = [f_c, 6, 3, 3, 3] # # def init_op_type(self): # self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNN_NHWC(TestConv3DTransposeOp): def init_test_case(self): self.pad = [0, 0, 0] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 5, 5, 5, 2] # NDHWC f_c = self.input_size[-1] self.filter_size = [f_c, 6, 3, 3, 3] self.data_format = 'NHWC' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 5, 5, 5, 2] # NDHWC f_c = self.input_size[-1] self.filter_size = [f_c, 6, 3, 3, 3] self.data_format = 'NHWC' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithAsymmetricPad_NHWC(TestWithAsymmetricPad): def init_test_case(self): self.pad = [1, 0, 1, 0, 0, 2] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 5, 5, 5, 2] # NDHWC f_c = self.input_size[-1] self.filter_size = [f_c, 6, 3, 3, 3] self.data_format = 'NHWC' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithStride_NHWC(TestWithStride): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [2, 2, 2] self.dilations = [1, 1, 1] self.groups = 1 self.input_size = [1, 5, 5, 5, 2] # NDHWC f_c = self.input_size[-1] self.filter_size = [f_c, 6, 3, 3, 3] self.data_format = 'NHWC' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestCUDNNWithGroups_NHWC(TestWithGroups): def init_test_case(self): self.pad = [1, 1, 1] self.stride = [1, 1, 1] self.dilations = [1, 1, 1] self.groups = 2 self.input_size = [1, 5, 5, 5, 2] # NDHWC f_c = self.input_size[-1] self.filter_size = [f_c, 3, 3, 3, 3] self.data_format = 'NHWC' def init_op_type(self): self.use_cudnn = True self.op_type = "conv3d_transpose" class TestConv3dTranspose(unittest.TestCase): def error_weight_input(self): array = np.array([1], dtype=np.float32) x = paddle.to_tensor( np.reshape(array, [1, 1, 1, 1, 1]), dtype='float32' ) weight = paddle.to_tensor(np.reshape(array, [1]), dtype='float32') paddle.nn.functional.conv3d_transpose(x, weight, bias=0) def test_type_error(self): self.assertRaises(ValueError, self.error_weight_input) if __name__ == '__main__': unittest.main()