/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "op_info.h" #include "paddle/framework/attribute.h" #include "paddle/framework/block_desc.h" #include "paddle/framework/data_type.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/scope.h" #include "paddle/framework/shape_inference.h" #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" #include "paddle/platform/place.h" #include "paddle/platform/variant.h" #include "paddle/utils/Error.h" namespace paddle { namespace framework { /// If a variable is a empty variable, that name will be used. constexpr char kEmptyVarName[] = "@EMPTY@"; /// If a variable is a temporary variable, that name will be set in Python, /// but it will be convert to a unique name in scope after OpCreator. constexpr char kTempVarName[] = "@TEMP@"; /// If a variable's name has a certain suffix, it means that the /// variable is the gradient of another varibale. /// e.g. Variable "x@GRAD" is the gradient of varibale "x". constexpr char kGradVarSuffix[] = "@GRAD"; /// Variables with this suffix are supposed to be filled up with zeros. constexpr char kZeroVarSuffix[] = "@ZERO"; inline std::string GradVarName(const std::string& var_name) { return var_name + kGradVarSuffix; } class OperatorBase; class ExecutionContext; extern const Tensor* GetTensorFromVar(const Variable* var); extern Tensor* GetTensorFromVar(Variable* var); /** * OperatorBase has the basic element that Net will call to do computation. * Only CreateOperator from OpRegistry will new Operator directly. User * should always construct a proto message OpDesc and call * OpRegistry::CreateOp(op_desc) to get an Operator instance. */ class OperatorBase { public: OperatorBase(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, const AttributeMap& attrs); virtual ~OperatorBase() {} template inline const T& Attr(const std::string& name) const { PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap", name); return boost::get(attrs_.at(name)); } virtual std::string DebugString() const; /// Net will call this function to Run an op. virtual void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const = 0; virtual bool IsNetOp() const { return false; } virtual bool SupportGPU() const { return false; } /// rename inputs outputs name void Rename(const std::string& old_name, const std::string& new_name); const VariableNameMap& Inputs() const { return inputs_; } const VariableNameMap& Outputs() const { return outputs_; } //! Get a input with argument's name described in `op_proto` std::string Input(const std::string& name) const; //! Get a input which has multiple variables. const std::vector& Inputs(const std::string& name) const; std::vector InputVars() const; //! Get a output with argument's name described in `op_proto` std::string Output(const std::string& name) const; //! Get an output which has multiple variables. //! TODO add a vector_view to prevent memory copy. const std::vector& Outputs(const std::string& name) const; virtual std::vector OutputVars(bool has_intermediate) const; const std::string& Type() const { return type_; } void SetType(const std::string& type) { type_ = type; } const AttributeMap& Attrs() const { return attrs_; } // Return a new operator instance, which is as same as this. // Use unique_ptr to prevent caller forget to delete this pointer. virtual std::unique_ptr Clone() const = 0; protected: std::string type_; // NOTE: in case of OpGrad, inputs_ contains: // I (Inputs)opear // O (Outputs) // OG (Output Gradients) VariableNameMap inputs_; // NOTE: in case of OpGrad, outputs_ contains // IG (Inputs Gradients) VariableNameMap outputs_; AttributeMap attrs_; private: void GenerateTemporaryNames(); void CheckAllInputOutputSet() const; }; // Macro for define a clone method. // If you are writing an kernel operator, `Clone` will be defined when you // register it. i.e. `Clone` method is not needed to define by yourself. #define DEFINE_OP_CLONE_METHOD(cls) \ std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final { \ return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \ } // Macro for define a default constructor for Operator. // You can also use // using PARENT_CLASS::PARENT_CLASS; // to use parent's constructor. #define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \ cls(const std::string& type, \ const ::paddle::framework::VariableNameMap& inputs, \ const ::paddle::framework::VariableNameMap& outputs, \ const paddle::framework::AttributeMap& attrs) \ : parent_cls(type, inputs, outputs, attrs) {} class NOP : public OperatorBase { public: using OperatorBase::OperatorBase; void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} std::unique_ptr Clone() const override { return std::unique_ptr(new NOP(*this)); } }; class ExecutionContext { public: ExecutionContext(const OperatorBase& op, const Scope& scope, const platform::DeviceContext& device_context) : op_(op), scope_(scope), device_context_(device_context) {} const OperatorBase& op() const { return op_; } const Scope& scope() const { return scope_; } template inline const T& Attr(const std::string& name) const { return op_.Attr(name); } size_t InputSize(const std::string& name) const { return op_.Inputs(name).size(); } size_t OutputSize(const std::string& name) const { return op_.Outputs(name).size(); } const Variable* InputVar(const std::string& name) const { auto ipt = op_.Input(name); return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); } Variable* OutputVar(const std::string& name) const { auto opt = op_.Output(name); return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt); } const std::vector MultiInputVar( const std::string& name) const { auto names = op_.Inputs(name); std::vector res; res.reserve(names.size()); std::transform(names.begin(), names.end(), std::back_inserter(res), [this](const std::string& name) { return name == kEmptyVarName ? nullptr : scope_.FindVar(name); }); return res; } std::vector MultiOutputVar(const std::string& name) const { auto names = op_.Outputs(name); std::vector res; res.reserve(names.size()); std::transform(names.begin(), names.end(), std::back_inserter(res), [this](const std::string& name) { return name == kEmptyVarName ? nullptr : scope_.FindVar(name); }); return res; } template const T* Input(const std::string& name) const { auto* var = InputVar(name); return var == nullptr ? nullptr : &var->Get(); } template T* Output(const std::string& name) const { auto var = OutputVar(name); return var == nullptr ? nullptr : var->GetMutable(); } template const std::vector MultiInput(const std::string& name) const { auto names = op_.Inputs(name); std::vector res; res.reserve(names.size()); std::transform(names.begin(), names.end(), std::back_inserter(res), [&](const std::string& sub_name) { auto var = scope_.FindVar(sub_name); return var == nullptr ? nullptr : &var->Get(); }); return res; } template std::vector MultiOutput(const std::string& name) const { auto names = op_.Outputs(name); std::vector res; res.reserve(names.size()); std::transform(names.begin(), names.end(), std::back_inserter(res), [&](const std::string& sub_name) { auto var = scope_.FindVar(sub_name); return var == nullptr ? nullptr : var->GetMutable(); }); return res; } void ShareLoD(const std::string& in, const std::string& out, size_t i = 0, size_t j = 0) const { PADDLE_ENFORCE_LT(i, InputSize(in)); PADDLE_ENFORCE_LT(j, OutputSize(out)); auto* in_var = MultiInputVar(in)[i]; auto* out_var = MultiOutputVar(out)[j]; if (!in_var->IsType()) return; PADDLE_ENFORCE(out_var->IsType(), "The %d-th output of Output(%s) must be LoDTensor.", j, out); auto in_tensor = in_var->Get(); auto* out_tensor = out_var->GetMutable(); out_tensor->set_lod(in_tensor.lod()); } template ::EigenDeviceType> DeviceType& GetEigenDevice() const; platform::Place GetPlace() const { return device_context_.GetPlace(); } const platform::DeviceContext& device_context() const { return device_context_; } #ifdef PADDLE_WITH_CUDA const platform::CUDADeviceContext& cuda_device_context() const { PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace())); auto cuda_ctx = reinterpret_cast(&device_context_); return *cuda_ctx; } #endif private: const OperatorBase& op_; const Scope& scope_; const platform::DeviceContext& device_context_; }; template <> const Tensor* ExecutionContext::Input(const std::string& name) const; template <> const std::vector ExecutionContext::MultiInput( const std::string& name) const; template <> Tensor* ExecutionContext::Output(const std::string& name) const; template <> std::vector ExecutionContext::MultiOutput( const std::string& name) const; class CompileTimeInferShapeContext : public InferShapeContext { public: CompileTimeInferShapeContext(const OpDescBind& op, const BlockDescBind& block) : op_(op), block_(block) {} bool HasInput(const std::string& name) const override { const std::vector& input_names = op_.Input(name); auto length = input_names.size(); PADDLE_ENFORCE_EQ(length, 1UL, "Input(%s) should have only one value, " "but it have %d now", name, length); return block_.HasVar(input_names[0]); } bool HasOutput(const std::string& name) const override { const std::vector& output_names = op_.Output(name); auto length = output_names.size(); PADDLE_ENFORCE_EQ(length, 1UL, "Output(%s) should have only one value, " "but it have %d now", name, length); return block_.HasVar(output_names[0]); } bool HasInputs(const std::string& name) const override { const std::vector& input_names = op_.Input(name); PADDLE_ENFORCE(!input_names.empty(), "Inputs(%s) length is 0", name); for (auto& input : input_names) { if (!block_.HasVar(input)) return false; } return true; } bool HasOutputs(const std::string& name) const override { const std::vector& output_names = op_.Output(name); PADDLE_ENFORCE(!output_names.empty(), "Inputs(%s) length is 0", name); for (auto& output : output_names) { if (!block_.HasVar(output)) return false; } return true; } DDim GetInputDim(const std::string& name) const override { std::vector ddims = GetInputsDim(name); auto length = ddims.size(); PADDLE_ENFORCE_EQ(length, 1UL, "Input(%s) should have 1 value, " "but it has %d now", name, length); return ddims[0]; } void SetInputDim(const std::string& name, const DDim& dim) override { SetInputsDim(name, {dim}); } DDim GetOutputDim(const std::string& name) const override { std::vector ddims = GetOutputsDim(name); auto length = ddims.size(); PADDLE_ENFORCE_EQ(length, 1UL, "Output(%s) should have 1 value, " "but it has %d now", name, length); return ddims[0]; } void SetOutputDim(const std::string& name, const DDim& dim) override { SetOutputsDim(name, {dim}); } AttrReader Attrs() const override { return AttrReader(op_.GetAttrMap()); } const std::vector& Inputs( const std::string& name) const override { return op_.Input(name); } const std::vector& Outputs( const std::string& name) const override { return op_.Output(name); } private: DDim GetDim(const std::string& name) const override { return framework::make_ddim(block_.FindVar(name)->Shape()); } void SetDim(const std::string& name, const DDim& dim) override { block_.FindVar(name)->SetShape(framework::vectorize(dim)); } const OpDescBind& op_; const BlockDescBind& block_; }; class RuntimeInferShapeContext : public InferShapeContext { public: RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope) : op_(op), scope_(scope) {} bool HasInput(const std::string& name) const override { auto ipt = op_.Input(name); auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } bool HasOutput(const std::string& name) const override { auto ipt = op_.Output(name); auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } bool HasInputs(const std::string& name) const override { auto inputs = op_.Inputs(name); if (inputs.empty()) { return false; } for (auto& input : inputs) { if (scope_.FindVar(input) == nullptr) { return false; } } return true; } bool HasOutputs(const std::string& name) const override { auto outputs = op_.Outputs(name); if (outputs.empty()) { return false; } for (auto& output : outputs) { if (scope_.FindVar(output) == nullptr) { return false; } } return true; } DDim GetInputDim(const std::string& name) const override { return GetDim(op_.Input(name)); } void SetInputDim(const std::string& name, const DDim& dim) override { SetDim(op_.Input(name), dim); } DDim GetOutputDim(const std::string& name) const override { return GetDim(op_.Output(name)); } void SetOutputDim(const std::string& name, const DDim& dim) override { SetDim(op_.Output(name), dim); } AttrReader Attrs() const override { return AttrReader(op_.Attrs()); } const std::vector& Inputs( const std::string& name) const override { return op_.Inputs(name); } const std::vector& Outputs( const std::string& name) const override { return op_.Outputs(name); } private: template Tensor* GetTensor(const std::string& name) const { Tensor* t = nullptr; auto* var = scope_.FindVar(name); if (!var->IsType() && !var->IsType()) { if (Allocate) { t = var->GetMutable(); } else { PADDLE_THROW("Variable(%s) should be tensor", name); } } else { t = GetTensorFromVar(scope_.FindVar(name)); } return t; } DDim GetDim(const std::string& name) const override { return GetTensor(name)->dims(); } void SetDim(const std::string& name, const DDim& dim) override { GetTensor(name)->Resize(dim); } const OperatorBase& op_; const Scope& scope_; }; class OpKernelBase { public: /** * ExecutionContext is the only parameter of Kernel Run function. * Run will get input/output variables, state such as momentum and * device resource such as CUDA stream, cublas handle, etc. from * ExecutionContext. User should construct it before run the Operator. */ virtual void Compute(const ExecutionContext& context) const = 0; virtual ~OpKernelBase() = default; }; template class OpKernel : public OpKernelBase { public: using ELEMENT_TYPE = T; }; class OperatorWithKernel : public OperatorBase { public: struct OpKernelKey { platform::Place place_; DataType data_type_; OpKernelKey(DataType data_type, platform::Place place) : place_(place), data_type_(data_type) {} OpKernelKey(DataType data_type, const platform::DeviceContext& dev_ctx) : place_(dev_ctx.GetPlace()), data_type_(data_type) {} bool operator==(const OpKernelKey& o) const { return platform::places_are_same_class(place_, o.place_) && data_type_ == o.data_type_; } }; struct OpKernelHash { std::hash hash_; size_t operator()(const OpKernelKey& key) const { int place = key.place_.which(); int data_type = static_cast(key.data_type_); int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT | (place & ((1 << NUM_PLACE_TYPE_LIMIT_IN_BIT) - 1)); return hash_(pre_hash); } }; using OpKernelMap = std::unordered_map, OpKernelHash>; OperatorWithKernel(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const final { RuntimeInferShapeContext infer_shape_ctx(*this, scope); this->InferShape(&infer_shape_ctx); ExecutionContext ctx(*this, scope, dev_ctx); // check if op[type] has kernel registered. auto& all_op_kernels = AllOpKernels(); auto kernels_iter = all_op_kernels.find(type_); if (kernels_iter == all_op_kernels.end()) { PADDLE_THROW("op[%s] has no kernel", type_); } // check if op[type] have kernel for kernel_key OpKernelMap& kernels = kernels_iter->second; auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx); auto kernel_iter = kernels.find(kernel_key); if (kernel_iter == kernels.end()) { PADDLE_THROW("op[%s] has no kernel with kernel_key[%s]", type_, kernel_key); } kernel_iter->second->Compute(ctx); } static std::unordered_map& AllOpKernels() { static std::unordered_map g_all_op_kernels; return g_all_op_kernels; } bool SupportGPU() const override { auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_); return std::any_of(op_kernels.begin(), op_kernels.end(), [](OpKernelMap::const_reference kern_pair) { return platform::is_gpu_place(kern_pair.first.place_); }); } virtual void InferShape(InferShapeContext* ctx) const = 0; protected: // indicate kernel DataType by input data. Defaultly all input data must be // same. virtual DataType IndicateDataType(const ExecutionContext& ctx) const { auto& scope = ctx.scope(); int data_type = -1; for (auto& input : this->inputs_) { for (auto& ipt_name : input.second) { auto* var = scope.FindVar(ipt_name); if (var != nullptr) { const Tensor* t = nullptr; if (var->IsType()) { t = &var->Get(); } else if (var->IsType()) { t = &var->Get(); } if (t != nullptr) { int tmp = static_cast(ToDataType(t->type())); PADDLE_ENFORCE(tmp == data_type || data_type == -1, "DataType of Paddle Op must be same."); data_type = tmp; } } } } PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input"); return static_cast(data_type); } }; std::ostream& operator<<(std::ostream& os, const OperatorWithKernel::OpKernelKey& kernel_key); } // namespace framework } // namespace paddle