// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/adadelta_kernel.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" namespace phi { template void AdadeltaKernel(const Context& dev_ctx, const DenseTensor& param, const DenseTensor& grad, const DenseTensor& avg_squared_grad, const DenseTensor& avg_squared_update, float rho, float epsilon, DenseTensor* param_out, DenseTensor* avg_squared_grad_out, DenseTensor* avg_squared_update_out) { dev_ctx.template Alloc(param_out); dev_ctx.template Alloc(avg_squared_grad_out); dev_ctx.template Alloc(avg_squared_update_out); T rho_ = static_cast(rho); T epsilon_ = static_cast(epsilon); auto eigen_param = EigenVector::Flatten(param); auto eigen_grad = EigenVector::Flatten(grad); // Squared gradient accumulator auto eigen_avg_squared_grad = EigenVector::Flatten(avg_squared_grad); // Squared updates accumulator auto eigen_avg_squared_update = EigenVector::Flatten(avg_squared_update); auto eigen_param_out = EigenVector::Flatten(*param_out); auto eigen_avg_squared_grad_out = EigenVector::Flatten(*avg_squared_grad_out); auto eigen_avg_squared_update_out = EigenVector::Flatten(*avg_squared_update_out); auto& place = *dev_ctx.eigen_device(); eigen_avg_squared_grad_out.device(place) = rho_ * eigen_avg_squared_grad + (1 - rho_) * eigen_grad.square(); auto update = -((eigen_avg_squared_update + epsilon_) / (eigen_avg_squared_grad_out + epsilon_)) .sqrt() * eigen_grad; eigen_avg_squared_update_out.device(place) = rho_ * eigen_avg_squared_update + (1 - rho_) * update.square(); eigen_param_out.device(place) = eigen_param + update; } } // namespace phi