// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/variable_visitor.h" namespace paddle { namespace framework { namespace details { void ReduceOpHandle::RunImpl() { if (places_.size() == 1) return; // the input and output may have dummy var. auto in_var_handles = DynamicCast(inputs_); PADDLE_ENFORCE_EQ( in_var_handles.size(), places_.size(), "The number of output should equal to the number of places."); VarHandle *out_var_handle; { auto out_var_handles = DynamicCast(outputs_); PADDLE_ENFORCE_EQ(out_var_handles.size(), 1, "The number of output should be one."); out_var_handle = out_var_handles.front(); } auto in_0_handle = in_var_handles[0]; std::vector var_scopes; for (auto *s : local_scopes_) { var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get()); } auto pre_in_var = var_scopes.at(in_0_handle->scope_idx_)->FindVar(in_0_handle->name_); PADDLE_ENFORCE_NOT_NULL(pre_in_var); // Wait input done, this Wait is asynchronous operation WaitInputVarGenerated(in_var_handles); // NOTE: The Places of all input tensor must be all on CPU or all on GPU. std::vector in_places; // used to get dev_ctx for (auto *in_handle : in_var_handles) { in_places.emplace_back(in_handle->place_); auto in_var = var_scopes.at(in_handle->scope_idx_)->FindVar(in_handle->name_); PADDLE_ENFORCE_NOT_NULL(in_var); VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var); } auto out_var = var_scopes.at(out_var_handle->scope_idx_)->FindVar(out_var_handle->name_); PADDLE_ENFORCE_NOT_NULL(out_var); // NOTE: The tensors' Place of input and output must be all on GPU or all on // CPU. auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place(); platform::Place t_out_p; if (platform::is_gpu_place(in_p)) { PADDLE_ENFORCE(platform::is_gpu_place(out_var_handle->place_), "Places of input and output must be all on GPU."); t_out_p = out_var_handle->place_; } else { t_out_p = platform::CPUPlace(); } if (pre_in_var->IsType()) { std::vector in_selected_rows = GetInputValues(in_var_handles, var_scopes); GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_, t_out_p, out_var->GetMutable()); } else { std::vector lod_tensors = GetInputValues(in_var_handles, var_scopes); if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) { ReduceLoDTensor func(lod_tensors, out_var->GetMutable()); VisitDataType(ToDataType(lod_tensors[0]->type()), func); } else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) { #ifdef PADDLE_WITH_CUDA auto pre_in = pre_in_var->Get(); VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var); VariableVisitor::GetMutableTensor(out_var).mutable_data( out_var_handle->place_, pre_in.type()); auto out_p = out_var_handle->place_; int root_id = boost::get(out_p).device; std::vector> all_reduce_calls; for (size_t i = 0; i < var_scopes.size(); ++i) { auto &p = in_places[i]; auto &lod_tensor = *lod_tensors[i]; int dev_id = boost::get(p).device; auto &nccl_ctx = nccl_ctxs_->at(dev_id); void *buffer = const_cast(lod_tensor.data()); void *recvbuffer = nullptr; if (root_id == dev_id) { recvbuffer = out_var->GetMutable()->mutable_data( out_var_handle->place_); } int type = platform::ToNCCLDataType(lod_tensor.type()); size_t numel = static_cast(lod_tensor.numel()); all_reduce_calls.emplace_back( [buffer, recvbuffer, type, numel, root_id, &nccl_ctx] { PADDLE_ENFORCE(platform::dynload::ncclReduce( buffer, recvbuffer, numel, static_cast(type), ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream())); }); } this->RunAndRecordEvent([&] { platform::NCCLGroupGuard guard; for (auto &call : all_reduce_calls) { call(); } }); #else PADDLE_THROW("CUDA is not enabled."); #endif } else { PADDLE_THROW("Place should be CPUPlace or CUDAPlace."); } } } template std::vector ReduceOpHandle::GetInputValues( const std::vector &in_var_handles, const std::vector &var_scopes) const { std::vector in_selected_rows; for (auto *in_handle : in_var_handles) { auto &in_sr = var_scopes.at(in_handle->scope_idx_) ->FindVar(in_handle->name_) ->Get(); in_selected_rows.emplace_back(&in_sr); } return in_selected_rows; } void ReduceOpHandle::WaitInputVarGenerated( const std::vector &in_var_handles) { for (auto *in : in_var_handles) { if (in->generated_op_) { for (auto pair : dev_ctxes_) { in->generated_op_->Wait(pair.second); } } } } std::string ReduceOpHandle::Name() const { return "reduce"; } } // namespace details } // namespace framework } // namespace paddle