# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn.functional as F from paddle import fluid import paddle.fluid.dygraph as dg import paddle.fluid.initializer as I import numpy as np import unittest from unittest import TestCase class TestFunctionalConv3D(TestCase): batch_size = 4 spatial_shape = (8, 8, 8) dtype = "float32" def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = 0 self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" def prepare(self): if isinstance(self.filter_shape, int): filter_shape = (self.filter_shape,) * 3 else: filter_shape = tuple(self.filter_shape) self.weight = np.random.uniform( -1, 1, (self.out_channels, self.in_channels // self.groups) + filter_shape, ).astype(self.dtype) if not self.no_bias: self.bias = np.random.uniform(-1, 1, (self.out_channels,)).astype( self.dtype ) self.channel_last = self.data_format == "NDHWC" if self.channel_last: self.input_shape = ( (self.batch_size,) + self.spatial_shape + (self.in_channels,) ) else: self.input_shape = ( self.batch_size, self.in_channels, ) + self.spatial_shape self.input = np.random.uniform(-1, 1, self.input_shape).astype( self.dtype ) def static_graph_case_1(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): if self.channel_last: x = fluid.data( "input", (-1, -1, -1, -1, self.in_channels), dtype=self.dtype, ) else: x = fluid.data( "input", (-1, self.in_channels, -1, -1, -1), dtype=self.dtype, ) y = paddle.static.nn.conv3d( x, self.out_channels, self.filter_shape, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, param_attr=I.NumpyArrayInitializer(self.weight), bias_attr=False if self.no_bias else I.NumpyArrayInitializer(self.bias), act=self.act, data_format=self.data_format, ) exe = fluid.Executor(self.place) exe.run(start) (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y]) return out def static_graph_case_2(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): if self.channel_last: x = x = fluid.data( "input", (-1, -1, -1, -1, self.in_channels), dtype=self.dtype, ) else: x = fluid.data( "input", (-1, self.in_channels, -1, -1, -1), dtype=self.dtype, ) weight = fluid.data( "weight", self.weight.shape, dtype=self.dtype ) if not self.no_bias: bias = fluid.data("bias", self.bias.shape, dtype=self.dtype) y = F.conv3d( x, weight, None if self.no_bias else bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format, ) if self.act == 'sigmoid': y = F.sigmoid(y) exe = fluid.Executor(self.place) exe.run(start) feed_dict = {"input": self.input, "weight": self.weight} if not self.no_bias: feed_dict["bias"] = self.bias (out,) = exe.run(main, feed=feed_dict, fetch_list=[y]) return out def dygraph_case(self): with dg.guard(self.place): x = dg.to_variable(self.input) weight = dg.to_variable(self.weight) bias = None if self.no_bias else dg.to_variable(self.bias) y = F.conv3d( x, weight, bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format, ) if self.act == 'sigmoid': y = F.sigmoid(y) out = y.numpy() return out def _test_identity(self): self.prepare() out1 = self.static_graph_case_1() out2 = self.static_graph_case_2() out3 = self.dygraph_case() np.testing.assert_array_almost_equal(out1, out2) np.testing.assert_array_almost_equal(out2, out3) def test_identity_cpu(self): self.place = fluid.CPUPlace() self._test_identity() @unittest.skipIf( not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) def test_identity_gpu(self): self.place = fluid.CUDAPlace(0) self._test_identity() class TestFunctionalConv3DError(TestCase): batch_size = 4 spatial_shape = (8, 8, 8) dtype = "float32" def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = "not_valid" self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" def test_exception(self): self.prepare() with self.assertRaises(ValueError): self.static_graph_case() def prepare(self): if isinstance(self.filter_shape, int): filter_shape = (self.filter_shape,) * 3 else: filter_shape = tuple(self.filter_shape) self.weight_shape = ( self.out_channels, self.in_channels // self.groups, ) + filter_shape self.bias_shape = (self.out_channels,) def static_graph_case(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): self.channel_last = self.data_format == "NDHWC" if self.channel_last: x = x = fluid.data( "input", (-1, -1, -1, -1, self.in_channels), dtype=self.dtype, ) else: x = fluid.data( "input", (-1, self.in_channels, -1, -1, -1), dtype=self.dtype, ) weight = fluid.data( "weight", self.weight_shape, dtype=self.dtype ) if not self.no_bias: bias = fluid.data("bias", self.bias_shape, dtype=self.dtype) y = F.conv3d( x, weight, None if self.no_bias else bias, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format, ) if self.act == 'sigmoid': y = F.sigmoid(y) class TestFunctionalConv3DCase2(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 2, 1] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase3(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 2, 3, 1, 2, 3] self.stride = 2 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase4(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 1, 2, 2, 3, 3] self.stride = 1 self.dilation = 2 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase5(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [1, 1], [2, 2], [1, 1], [0, 0]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DCase6(TestFunctionalConv3D): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [0, 0], [1, 1], [2, 2], [2, 2]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DCase7(TestFunctionalConv3D): def setUp(self): self.in_channels = 6 self.out_channels = 8 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DCase8(TestFunctionalConv3D): def setUp(self): self.in_channels = 6 self.out_channels = 12 self.filter_shape = 3 self.padding = "valid" self.stride = 1 self.dilation = 1 self.groups = 6 self.no_bias = True self.act = None self.use_cudnn = False self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase2(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [1, 1], [1, 2], [3, 4], [5, 6]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase3(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 4 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "not_valid" class TestFunctionalConv3DErrorCase4(TestFunctionalConv3DError): def setUp(self): self.in_channels = 4 self.out_channels = 3 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase7(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "not_valid" class TestFunctionalConv3DErrorCase8(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 5 self.filter_shape = 3 self.padding = [1, 2, 1, 2, 1] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase9(TestFunctionalConv3DError): def setUp(self): self.in_channels = -5 self.out_channels = 5 self.filter_shape = 3 self.padding = [[0, 0], [0, 0], [3, 2], [1, 2], [1, 1]] self.stride = 1 self.dilation = 1 self.groups = 1 self.no_bias = False self.act = "sigmoid" self.data_format = "NCDHW" class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError): def setUp(self): self.in_channels = 3 self.out_channels = 4 self.filter_shape = 3 self.padding = "same" self.stride = 1 self.dilation = 1 self.groups = 2 self.no_bias = False self.act = "sigmoid" self.data_format = "NDHWC" class TestFunctionalConv3DErrorCase11(TestCase): def setUp(self): self.input = np.array([]) self.filter = np.array([]) self.num_filters = 0 self.filter_size = 0 self.bias = None self.padding = 0 self.stride = 1 self.dilation = 1 self.groups = 1 self.data_format = "NCDHW" def static_graph_case(self): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): x = fluid.data("input", self.input.shape, dtype=paddle.float32) y = paddle.static.nn.conv3d( x, self.num_filters, self.filter_size, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, param_attr=I.NumpyArrayInitializer(self.filter), bias_attr=False if self.bias is None else I.NumpyArrayInitializer(self.bias), act=None, data_format=self.data_format, ) exe = fluid.Executor() exe.run(start) (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y]) return out def dygraph_case(self): with dg.guard(): x = dg.to_variable(self.input, dtype=paddle.float32) w = dg.to_variable(self.filter, dtype=paddle.float32) b = ( None if self.bias is None else dg.to_variable(self.bias, dtype=paddle.float32) ) y = F.conv3d( x, w, b, padding=self.padding, stride=self.stride, dilation=self.dilation, groups=self.groups, data_format=self.data_format, ) def test_dygraph_exception(self): with self.assertRaises(ValueError): self.dygraph_case() def test_static_exception(self): with self.assertRaises(ValueError): self.static_graph_case() class TestFunctionalConv3DErrorCase12(TestFunctionalConv3DErrorCase11): def setUp(self): self.input = np.random.randn(1, 3, 3, 3, 3) self.filter = np.random.randn(3, 3, 1, 1, 1) self.num_filters = 3 self.filter_size = 1 self.bias = None self.padding = 0 self.stride = 1 self.dilation = 1 self.groups = 0 self.data_format = "NCDHW" if __name__ == "__main__": paddle.enable_static() unittest.main()