/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "MKLDNNLayer.h" #include "mkldnn.hpp" namespace paddle { /** * @brief A subclass of MKLDNNLayer conv layer. * * The config file api is mkldnn_conv */ class MKLDNNConvLayer : public MKLDNNLayer { protected: // padding height and width int ph_, pw_; // stride height and width int sh_, sw_; // dilation height and width int dh_, dw_; // filter(kenerl) height and width int fh_, fw_; // group number int gp_; // in backward data the format is different with wgtVal_ MKLDNNMatrixPtr wgtValBwdData_; std::shared_ptr cvtWgtVal_; // save forward primitive_desc use for backward std::shared_ptr fwdPD_; // MKLDNNMatrixPtr with cpu device for conversion between MKLDNN device MKLDNNMatrixPtr cpuInVal_; MKLDNNMatrixPtr cpuInGrad_; MKLDNNMatrixPtr cpuOutVal_; MKLDNNMatrixPtr cpuOutGrad_; std::shared_ptr cvtInVal_; std::shared_ptr cvtInGrad_; std::shared_ptr cvtOutVal_; std::shared_ptr cvtOutGrad_; // if has already init the weight bool hasInitedWgt_; // True by default. This impact the calculation of output size. // For example: // - input(+padding): 0123456789 // - imageSize(+padding) = 10; // - filterSize = 3; // - stride = 2; // - caffeMode_ is true: // - output: (012), (234), (456), (678) // - outputSize = 4; // - caffeMode_ is false: // - output: (012), (234), (456), (678), (9) // - outputSize = 5; bool caffeMode_; // weight and bias std::unique_ptr weight_; std::unique_ptr biases_; public: explicit MKLDNNConvLayer(const LayerConfig& config) : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {} ~MKLDNNConvLayer() {} bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) override; void reshape( int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; void resetFwd(std::vector& pipeline, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; void resetBwd(std::vector& pipeline, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; void updateInputData() override; void updateWeights(const UpdateCallback& callback) override; void convertWeightsFromPaddle() override; void convertWeightsToPaddle() override; protected: void printSizeInfo() override { MKLDNNLayer::printSizeInfo(); VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_ << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_ << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_; } void printValueFormatFlow() override { if (cpuInVal_) { VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>"; } MKLDNNLayer::printValueFormatFlow(); if (cpuOutVal_) { VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat(); } } void printGradFormatFlow() override { if (cpuInGrad_) { VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<"; } MKLDNNLayer::printGradFormatFlow(); if (cpuOutGrad_) { VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat(); } } /** * get padding_r according to * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ * test_convolution_forward_common.hpp * @note: mkldnn dilation start from 0 while paddle start from 1 */ mkldnn::memory::dims getPaddingR() const { mkldnn::memory::dims padR = {ph_, pw_}; for (int i = 0; i < 2; ++i) { if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) { ++padR[0]; } if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) { ++padR[1]; } } return padR; } }; } // namespace paddle