/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "ngraph/ngraph.hpp" #include "paddle/fluid/operators/ngraph/ops/op_bridge.h" #include "paddle/fluid/platform/ngraph_helper.h" namespace paddle { namespace operators { namespace ngraphs { std::shared_ptr remove_trailing_one( const std::shared_ptr& input) { auto shape = input->get_shape(); if (shape.back() == 1) { shape.pop_back(); return platform::NgReshaper(input, shape); } else { return input; } } std::shared_ptr flatten_node( const std::shared_ptr& input) { auto shape = input->get_shape(); auto rank = shape.size(); auto output = input; if (rank > 2) { auto shape_2d = paddle::platform::FlattenTo2d(shape, rank - 1); output = paddle::platform::NgReshaper(input, shape_2d); } return output; } std::shared_ptr convert_to_node_type( const std::shared_ptr& input, const std::shared_ptr& ref) { auto output = input; if (input->get_element_type() != ref->get_element_type()) { output = std::make_shared(input, ref->get_element_type()); } return output; } std::shared_ptr create_xe( const std::shared_ptr& one_hot, const std::shared_ptr& x) { auto node_log = std::make_shared(x); auto node_mul = one_hot * node_log; auto node_sum = std::make_shared( node_mul, ngraph::AxisSet{x->get_shape().size() - 1}); auto shape = x->get_shape(); shape.back() = 1; return platform::NgReshaper(-node_sum, shape); } std::shared_ptr create_mask( const std::shared_ptr& label, int ignore_index) { auto ignore_node = paddle::platform::CreateConstant( label->get_element_type(), label->get_shape(), {ignore_index}); auto not_equal_node = std::make_shared(label, ignore_node); return not_equal_node; } std::shared_ptr create_one_hot( const std::shared_ptr& label, const std::shared_ptr& x) { auto label_shape = label->get_shape(); return std::make_shared( remove_trailing_one(label), x->get_shape(), x->get_shape().size() - 1); } std::shared_ptr GetCrossEntropy( std::shared_ptr x, std::shared_ptr label, const bool is_soft_label, int ignore_index) { std::shared_ptr node_1_hot = label; if (!is_soft_label) { node_1_hot = create_one_hot(label, x); } node_1_hot = convert_to_node_type(node_1_hot, x); auto xe = create_xe(node_1_hot, x); if (!is_soft_label) { auto mask = convert_to_node_type(create_mask(label, ignore_index), xe); xe = xe * mask; } return xe; } std::shared_ptr GetCrossEntropyGrad( std::shared_ptr x, std::shared_ptr label, std::shared_ptr dy, const bool is_soft_label, int ignore_index) { auto x_shape = x->get_shape(); auto rank = x_shape.size(); std::shared_ptr mask; if (!is_soft_label) { mask = convert_to_node_type(create_mask(label, ignore_index), x); mask = std::make_shared( remove_trailing_one(mask), x_shape, ngraph::AxisSet{rank - 1}); label = create_one_hot(label, x); } auto dy_reshape = remove_trailing_one(dy); auto dy_bcast = std::make_shared( dy_reshape, x_shape, ngraph::AxisSet{rank - 1}); label = convert_to_node_type(label, x); auto xe_grad = -label * dy_bcast / x; if (!is_soft_label) { xe_grad = xe_grad * mask; } return xe_grad; } void BuildCrossEntropyNode( const std::shared_ptr& op, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map); auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map); auto op_attrs = paddle::framework::AttrReader(op->Attrs()); const bool is_soft_label = op_attrs.Get("soft_label"); int ignore_index = op_attrs.Get("ignore_index"); auto xe = GetCrossEntropy(x, label, is_soft_label, ignore_index); paddle::platform::SetOutputNode(op, "Y", xe, ngb_node_map); } void BuildCrossEntropyGradNode( const std::shared_ptr& op, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto op_attrs = paddle::framework::AttrReader(op->Attrs()); const bool is_soft_label = op_attrs.Get("soft_label"); int ignore_index = op_attrs.Get("ignore_index"); auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map); auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map); auto dy = paddle::platform::GetInputNode(op, "Y@GRAD", ngb_node_map); auto xe_grad = GetCrossEntropyGrad(x, label, dy, is_soft_label, ignore_index); paddle::platform::SetOutputNode(op, "X@GRAD", xe_grad, ngb_node_map); } void BuildCrossEntropy2Node( const std::shared_ptr& op, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map); auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map); auto op_attrs = paddle::framework::AttrReader(op->Attrs()); int ignore_index = op_attrs.Get("ignore_index"); auto rank = x->get_shape().size(); auto one_hot = convert_to_node_type(create_one_hot(label, x), x); auto xe = create_xe(one_hot, x); auto mask = convert_to_node_type(create_mask(label, ignore_index), xe); xe = xe * mask; std::shared_ptr node_sum = std::make_shared(one_hot * x, ngraph::AxisSet{rank - 1}); node_sum = paddle::platform::NgReshaper(node_sum, mask->get_shape()); auto matchx = mask * node_sum; paddle::platform::SetOutputNode(op, "MatchX", matchx, ngb_node_map); platform::SetOutputNode(op, "XShape", x, ngb_node_map); paddle::platform::SetOutputNode(op, "Y", xe, ngb_node_map); } void BuildCrossEntropyGrad2Node( const std::shared_ptr& op, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto op_attrs = paddle::framework::AttrReader(op->Attrs()); int ignore_index = op_attrs.Get("ignore_index"); auto matchx = paddle::platform::GetInputNode(op, "MatchX", ngb_node_map); auto label = paddle::platform::GetInputNode(op, "Label", ngb_node_map); auto x = paddle::platform::GetInputNode(op, "XShape", ngb_node_map); auto dy = paddle::platform::GetInputNode(op, framework::GradVarName("Y"), ngb_node_map); matchx = remove_trailing_one(matchx); label = remove_trailing_one(label); x = remove_trailing_one(x); dy = remove_trailing_one(dy); auto x_shape = x->get_shape(); auto rank = x_shape.size(); auto one_hot = convert_to_node_type(create_one_hot(label, x), x); auto mask = convert_to_node_type(create_mask(label, ignore_index), x); auto zero = paddle::platform::CreateConstant(matchx->get_element_type(), matchx->get_shape(), {0}); auto one = paddle::platform::CreateConstant(matchx->get_element_type(), matchx->get_shape(), {1}); auto is_zero = std::make_shared(matchx, zero); matchx = std::make_shared(is_zero, one, matchx); auto dy_bcast = std::make_shared( mask * dy, x_shape, ngraph::AxisSet{rank - 1}); auto matchx_bcast = std::make_shared( matchx, x_shape, ngraph::AxisSet{rank - 1}); auto xe_grad = -dy_bcast * one_hot / matchx_bcast; paddle::platform::SetOutputNode(op, framework::GradVarName("X"), xe_grad, ngb_node_map); } } // namespace ngraphs } // namespace operators } // namespace paddle REGISTER_NG_OP(cross_entropy, BuildCrossEntropyNode); REGISTER_NG_OP(cross_entropy_grad, BuildCrossEntropyGradNode); REGISTER_NG_OP(cross_entropy2, BuildCrossEntropy2Node); REGISTER_NG_OP(cross_entropy_grad2, BuildCrossEntropyGrad2Node);