// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/arg_min_max_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { enum ArgMinMaxType { kArgMin, kArgMax }; template struct ArgMinMaxFunctor {}; #define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value) \ template \ struct ArgMinMaxFunctor { \ void operator()(const Context& dev_ctx, \ const DenseTensor& in, \ DenseTensor* out, \ phi::DDim x_dims, \ int64_t axis, \ bool keepdims) { \ auto in_eigen = EigenTensor::From(in, x_dims); \ if (keepdims) { \ auto out_eigen = EigenTensor::From(*out); \ out_eigen.device(*(dev_ctx.eigen_device())) = \ in_eigen.eigen_op_type(axis).template cast(); \ } else { \ auto out_eigen = EigenTensor::From(*out); \ out_eigen.device(*(dev_ctx.eigen_device())) = \ in_eigen.eigen_op_type(axis).template cast(); \ } \ } \ } DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin); DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax); template struct VisitDataArgMinMaxFunctor { const Context& dev_ctx; const DenseTensor& x; int64_t axis; bool keepdims; bool flatten; DenseTensor* out; explicit VisitDataArgMinMaxFunctor(const Context& dev_ctx, const DenseTensor& x, int64_t axis, bool keepdims, bool flatten, DenseTensor* out) : dev_ctx(dev_ctx), x(x), axis(axis), keepdims(keepdims), flatten(flatten), out(out) {} template void apply() const { dev_ctx.template Alloc(out); bool new_keepdims = keepdims; if (flatten) new_keepdims = true; // if flatten, will construct the new dims for the cacluate phi::DDim x_dims; int new_axis = axis; if (flatten) { x_dims = phi::make_ddim({x.numel()}); // if flatten, the axis just as 0 new_axis = 0; } else { x_dims = x.dims(); if (axis < 0) new_axis = axis + x_dims.size(); } #define CALL_ARG_MINMAX_FUNCTOR(rank) \ ArgMinMaxFunctor functor##rank; \ functor##rank(dev_ctx, x, out, x_dims, new_axis, new_keepdims) switch (x_dims.size()) { case 1: CALL_ARG_MINMAX_FUNCTOR(1); break; case 2: CALL_ARG_MINMAX_FUNCTOR(2); break; case 3: CALL_ARG_MINMAX_FUNCTOR(3); break; case 4: CALL_ARG_MINMAX_FUNCTOR(4); break; case 5: CALL_ARG_MINMAX_FUNCTOR(5); break; case 6: CALL_ARG_MINMAX_FUNCTOR(6); break; default: PADDLE_ENFORCE_LE( x_dims.size(), 6, phi::errors::InvalidArgument( "%s operator doesn't supports tensors whose ranks are greater " "than 6.", (EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax"))); break; #undef CALL_ARG_MINMAX_FUNCTOR } } }; template void ArgMinMaxKernel(const Context& dev_ctx, const DenseTensor& x, int64_t axis, bool keepdims, bool flatten, int dtype, DenseTensor* out) { if (dtype < 0) { paddle::framework::VisitDataTypeTiny( static_cast( paddle::framework::proto::VarType::INT64), VisitDataArgMinMaxFunctor( dev_ctx, x, axis, keepdims, flatten, out)); return; } paddle::framework::VisitDataTypeTiny( static_cast(dtype), VisitDataArgMinMaxFunctor( dev_ctx, x, axis, keepdims, flatten, out)); } template void ArgMinKernel(const Context& dev_ctx, const DenseTensor& x, int64_t axis, bool keepdims, bool flatten, int dtype, DenseTensor* out) { ArgMinMaxKernel( dev_ctx, x, axis, keepdims, flatten, dtype, out); } template void ArgMaxKernel(const Context& dev_ctx, const DenseTensor& x, int64_t axis, bool keepdims, bool flatten, int dtype, DenseTensor* out) { ArgMinMaxKernel( dev_ctx, x, axis, keepdims, flatten, dtype, out); } } // namespace phi PD_REGISTER_KERNEL(arg_min, CPU, ALL_LAYOUT, phi::ArgMinKernel, float, double, int32_t, int64_t, int16_t, uint8_t) {} PD_REGISTER_KERNEL(arg_max, CPU, ALL_LAYOUT, phi::ArgMaxKernel, float, double, int32_t, int64_t, int16_t, uint8_t) {}