// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include // NOLINT #include "paddle/fluid/distributed/fleet_executor/dist_model.h" #include "paddle/fluid/distributed/fleet_executor/fleet_executor.h" #include "paddle/fluid/distributed/fleet_executor/task_node.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/naive_executor.h" #include "paddle/fluid/framework/op_proto_maker.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/tensor.h" namespace paddle { namespace distributed { namespace { bool IsPersistable(const framework::VarDesc *var) { if (var->Persistable() && var->GetType() != framework::proto::VarType::FEED_MINIBATCH && var->GetType() != framework::proto::VarType::FETCH_LIST && var->GetType() != framework::proto::VarType::RAW) { return true; } return false; } bool LoadDataFromDistModelTensor(const DistModelTensor &input_data, framework::LoDTensor *input_tensor, const platform::Place &place) { VLOG(3) << "Loading data from DistModelTensor for " << input_data.name; framework::DDim dims = phi::make_ddim(input_data.shape); void *input_tensor_ptr; if (input_data.dtype == DistModelDataType::INT64) { input_tensor_ptr = input_tensor->mutable_data(dims, place); } else if (input_data.dtype == DistModelDataType::FLOAT32) { input_tensor_ptr = input_tensor->mutable_data(dims, place); } else if (input_data.dtype == DistModelDataType::INT32) { input_tensor_ptr = input_tensor->mutable_data(dims, place); } else if (input_data.dtype == DistModelDataType::FLOAT16) { input_tensor_ptr = input_tensor->mutable_data(dims, place); } else { LOG(ERROR) << "unsupported feed type " << input_data.dtype; return false; } PADDLE_ENFORCE_NOT_NULL( input_tensor_ptr, paddle::platform::errors::Fatal( "LoDTensor creation failed. DistModel loaded data failed.")); PADDLE_ENFORCE_NOT_NULL(input_data.data.data(), paddle::platform::errors::InvalidArgument( "DistModelTensor contains no data.")); if (platform::is_cpu_place(place)) { VLOG(3) << "Loading data for CPU."; std::memcpy(static_cast(input_tensor_ptr), input_data.data.data(), input_data.data.length()); } else if (platform::is_gpu_place(place)) { VLOG(3) << "Loading data for GPU."; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto *dev_ctx = dynamic_cast(pool.Get(place)); auto gpu_place = place; memory::Copy(gpu_place, static_cast(input_tensor_ptr), platform::CPUPlace(), input_data.data.data(), input_data.data.length(), dev_ctx->stream()); #else PADDLE_THROW(paddle::platform::errors::Fatal( "Paddle wasn't compiled with CUDA, but place is GPU.")); #endif } else { PADDLE_THROW(paddle::platform::errors::InvalidArgument( "DistModel only supports CPU and GPU.")); } framework::LoD dst_lod; for (auto &src_lod : input_data.lod) { dst_lod.emplace_back(src_lod); } input_tensor->set_lod(dst_lod); return true; } std::string DistModelDTypeToString(DistModelDataType dtype) { switch (dtype) { case DistModelDataType::FLOAT32: return "float32"; case DistModelDataType::FLOAT16: return "float16"; case DistModelDataType::INT64: return "int64"; case DistModelDataType::INT32: return "int32"; case DistModelDataType::INT8: return "int8"; } return "NOT SUPPORT DTYPE"; } class DistModelTimer { public: void tic() { tic_time = std::chrono::high_resolution_clock::now(); } double toc() { std::chrono::high_resolution_clock::time_point toc_time = std::chrono::high_resolution_clock::now(); std::chrono::duration time_elapse = std::chrono::duration_cast>(toc_time - tic_time); double time_elapse_in_ms = static_cast(time_elapse.count()) * 1000.0; return time_elapse_in_ms; } private: std::chrono::high_resolution_clock::time_point tic_time; }; } // namespace bool DistModel::Init() { carrier_id_ = "inference"; bool init_method = (!config_.model_dir.empty() || config_.program_desc); PADDLE_ENFORCE_EQ(init_method, true, platform::errors::InvalidArgument( "One of model dir or program desc must be provided to " "dist model inference.")); if (config_.program_desc) { PADDLE_ENFORCE_NOT_NULL( config_.scope, platform::errors::InvalidArgument( "Scope must be provided to dist model inference if " "program desc has been provided.")); } if (!PreparePlace()) { return false; } if (!config_.program_desc) { if (config_.scope) { LOG(WARNING) << "The provided scope will be ignored if model dir has " "also been provided."; } if (!PrepareScope()) { return false; } if (!PrepareProgram()) { return false; } } else { program_.reset(config_.program_desc); scope_.reset(config_.scope); } if (!PrepareFeedAndFetch()) { return false; } if (config_.nranks > 1 && !CommInit()) { return false; } if (!PrepareFleetExe()) { return false; } return true; } bool DistModel::PreparePlace() { if (config_.place == "GPU") { place_ = paddle::platform::CUDAPlace(config_.device_id); } else if (config_.place == "CPU") { place_ = paddle::platform::CPUPlace(); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Place must be choosen from GPU or CPU, but got %s.", config_.place)); } return true; } bool DistModel::CommInit() { std::unique_ptr comm_init_program( new framework::ProgramDesc()); framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0); std::vector &ring_ids = config_.rank_to_ring_ids_[config_.local_rank]; int64_t order = 0; std::string var_name_base = "comm_init_"; for (int64_t ring_id : ring_ids) { VLOG(3) << "Init comm for ring id: " << ring_id; int64_t ranks_in_group = config_.ring_id_to_ranks_[ring_id].size(); int64_t rank_in_group = 0; std::vector &ranks = config_.ring_id_to_ranks_[ring_id]; for (int64_t rank : ranks) { if (config_.local_rank == rank) { break; } rank_in_group += 1; } std::vector peer_endpoints; for (int64_t rank : ranks) { if (config_.local_rank == rank) { continue; } peer_endpoints.emplace_back(config_.trainer_endpoints[rank]); } InsertCommOp(var_name_base + std::to_string(order), ranks_in_group, rank_in_group, peer_endpoints, comm_init_block, ring_id); order += 1; } framework::NaiveExecutor e(place_); e.CreateVariables(*comm_init_program, 0, true, scope_.get()); e.Prepare(scope_.get(), *comm_init_program, 0, false); e.Run(); VLOG(3) << "Comm init successful."; return true; } void DistModel::InsertCommOp(std::string tmp_var_name, int nranks, int rank, const std::vector &peer_endpoints, framework::BlockDesc *block, int ring_id) { /* * tmp_var_name: the var name for var comm_id * nranks: number of total ranks * rank: the rank of local rank in the comm group * peer_endpoints: peer's endpoints * block: the block where to insert the comm ops * ring_id: the ring_id to be inited */ std::string &endpoint = config_.current_endpoint; std::stringstream ss; ss << "Init comm with tmp var: " << tmp_var_name << ". The ring id is: " << ring_id << ". The group has: " << nranks << " ranks. Current rank in the group is: " << rank << ". The endpoint is: " << endpoint << ". Peer endpoints are: "; for (auto ep : peer_endpoints) { ss << ep << ", "; } VLOG(3) << ss.str(); if (config_.place == "GPU") { framework::VarDesc *new_var = block->Var(tmp_var_name); new_var->SetType(framework::proto::VarType::RAW); new_var->SetPersistable(true); framework::OpDesc *gen_nccl_id_op = block->AppendOp(); gen_nccl_id_op->SetType("c_gen_nccl_id"); gen_nccl_id_op->SetOutput("Out", {tmp_var_name}); gen_nccl_id_op->SetAttr("rank", rank); gen_nccl_id_op->SetAttr("endpoint", config_.current_endpoint); gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints); gen_nccl_id_op->SetAttr("ring_id", ring_id); gen_nccl_id_op->SetAttr("op_role", static_cast(framework::OpRole::kForward)); gen_nccl_id_op->CheckAttrs(); framework::OpDesc *comm_init_op = block->AppendOp(); comm_init_op->SetType("c_comm_init"); comm_init_op->SetInput("X", {tmp_var_name}); comm_init_op->SetAttr("rank", rank); comm_init_op->SetAttr("nranks", nranks); comm_init_op->SetAttr("ring_id", ring_id); comm_init_op->SetAttr("op_role", static_cast(framework::OpRole::kForward)); comm_init_op->CheckAttrs(); } else { LOG(WARNING) << "DistModelInf doesn't init comm."; // TODO(fleet exe dev): comm init for more devices } } bool DistModel::PrepareScope() { scope_.reset(new framework::Scope()); return true; } bool DistModel::PrepareProgram() { if (!LoadProgram()) { return false; } if (!LoadParameters()) { return false; } return true; } bool DistModel::LoadProgram() { VLOG(3) << "Loading program from " << config_.model_dir; PADDLE_ENFORCE_NE(config_.model_dir, "", platform::errors::InvalidArgument( "Model dir must be provided.")); std::string model_path = config_.model_dir + ".pdmodel"; framework::proto::ProgramDesc program_proto; std::string pb_content; // Read binary std::ifstream fin(model_path, std::ios::in | std::ios::binary); PADDLE_ENFORCE_EQ( static_cast(fin.is_open()), true, platform::errors::NotFound( "Cannot open file %s, please confirm whether the file is normal.", model_path)); fin.seekg(0, std::ios::end); pb_content.resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(pb_content.at(0)), pb_content.size()); fin.close(); program_proto.ParseFromString(pb_content); VLOG(5) << pb_content; program_.reset(new framework::ProgramDesc(program_proto)); return true; } bool DistModel::LoadParameters() { VLOG(3) << "Loading parameters from " << config_.model_dir; PADDLE_ENFORCE_NOT_NULL(program_.get(), platform::errors::PreconditionNotMet( "The program should be loaded first.")); const auto &global_block = program_->MutableBlock(0); // create a temporary program to load parameters. std::unique_ptr load_program( new framework::ProgramDesc()); framework::BlockDesc *load_block = load_program->MutableBlock(0); std::vector params; for (auto *var : global_block->AllVars()) { if (IsPersistable(var)) { VLOG(3) << "persistable variable's name: " << var->Name(); framework::VarDesc *new_var = load_block->Var(var->Name()); new_var->SetShape(var->GetShape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetPersistable(true); params.push_back(new_var->Name()); // NOTE: if the params are stored in different files, 'load' op should be // added here } } std::string param_path = config_.model_dir + ".pdiparams"; // sort paramlist to have consistent ordering std::sort(params.begin(), params.end()); // append just the load_combine op framework::OpDesc *op = load_block->AppendOp(); op->SetType("load_combine"); op->SetOutput("Out", params); op->SetAttr("file_path", {param_path}); op->CheckAttrs(); framework::NaiveExecutor e(place_); // Create all persistable variables in root scope to load them from ckpt. // Other non-persistable variables will be created in the micro scope // managed by fleet executor. e.CreateVariables(*program_, 0, true, scope_.get()); e.Prepare(scope_.get(), *load_program, 0, false); e.Run(); VLOG(3) << "After loading there are " << scope_->LocalVarNames().size() << " vars."; return true; } bool DistModel::PrepareFleetExe() { task_node_.reset(new TaskNode(program_.get(), config_.local_rank)); // With auto cut, there is no concept of pp, no need to add dependency. task_node_->SetType("Compute"); task_node_->Init(); executor_desc_ = FleetExecutorDesc(); executor_desc_.set_cur_rank(config_.local_rank); std::unordered_map id_to_rank; for (int i = 0; i < config_.nranks; ++i) { RankInfo *rank_info = executor_desc_.add_cluster_info(); rank_info->set_rank(i); rank_info->set_ip_port(config_.trainer_endpoints[i]); id_to_rank.insert({i, i}); } fleet_exe.reset(new FleetExecutor(executor_desc_)); fleet_exe->Init(carrier_id_, *(program_.get()), scope_.get(), place_, 1, {task_node_.get()}, id_to_rank); return true; } bool DistModel::PrepareFeedAndFetch() { for (auto *op : program_->Block(0).AllOps()) { if (op->Type() == "feed") { VLOG(3) << "feed op with feed var: " << op->Output("Out")[0]; int idx = BOOST_GET_CONST(int, op->GetAttr("col")); if (feeds_.size() <= static_cast(idx)) { feeds_.resize(idx + 1); } feeds_[idx] = op; std::string var_name = op->Output("Out")[0]; feed_names_[var_name] = idx; idx_to_feeds_[idx] = var_name; framework::VarDesc *real_var = program_->Block(0).FindVar(var_name); if (!real_var) { LOG(ERROR) << "The output of feed ops [" << var_name << "] cannot be found in the program. Check the inference program."; return false; } if (real_var->GetDataType() == framework::proto::VarType::FP32) { feeds_to_dtype_.insert({var_name, DistModelDataType::FLOAT32}); } else if (real_var->GetDataType() == framework::proto::VarType::INT32) { feeds_to_dtype_.insert({var_name, DistModelDataType::INT32}); } else if (real_var->GetDataType() == framework::proto::VarType::INT64) { feeds_to_dtype_.insert({var_name, DistModelDataType::INT64}); } else if (real_var->GetDataType() == framework::proto::VarType::FP16) { feeds_to_dtype_.insert({var_name, DistModelDataType::FLOAT16}); } else { LOG(ERROR) << "Don't support feed var dtype for: " << real_var->GetDataType(); return false; } } else if (op->Type() == "fetch") { VLOG(3) << "fetch op with fetch var: " << op->Input("X")[0]; int idx = BOOST_GET_CONST(int, op->GetAttr("col")); if (fetches_.size() <= static_cast(idx)) { fetches_.resize(idx + 1); } fetches_[idx] = op; idx_to_fetches_[idx] = op->Input("X")[0]; } } if (feeds_.size() == 0) { LOG(ERROR) << "No feed ops in the inf program, please check the program."; return false; } if (fetches_.size() == 0) { LOG(ERROR) << "No fetch op in the inf program, please check the program."; return false; } return true; } bool DistModel::FeedData(const std::vector &input_data, framework::Scope *scope) { VLOG(3) << "DistModel is feeding data."; if (input_data.size() != feeds_.size()) { LOG(ERROR) << "Should provide " << feeds_.size() << " feeds, but got " << input_data.size() << " data."; return false; } feed_tensors_.resize(feeds_.size()); for (size_t i = 0; i < input_data.size(); ++i) { // feed each data separately framework::LoDTensor *input_tensor = &(feed_tensors_[i]); if (!LoadDataFromDistModelTensor(input_data[i], input_tensor, place_)) { LOG(ERROR) << "Fail to load data from tensor " << input_data[i].name; return false; } std::string target_name = input_data[i].name; if (feed_names_.find(target_name) == feed_names_.end()) { LOG(ERROR) << "The input name [" << target_name << "] cannot be found in the program." << " DistModel loads data failed."; return false; } if (input_data[i].dtype != feeds_to_dtype_[target_name]) { LOG(ERROR) << "Feed var [" << target_name << "] expected dtype is: " << DistModelDTypeToString(feeds_to_dtype_[target_name]) << ". But received dtype is: " << DistModelDTypeToString(input_data[i].dtype) << "."; return false; } int feed_idx = feed_names_[target_name]; framework::SetFeedVariable(scope, *input_tensor, "feed", feed_idx); } return true; } bool DistModel::FetchResults(std::vector *output_data, framework::Scope *scope) { VLOG(3) << "DistModel is fetch results."; output_data->resize(fetches_.size()); for (size_t i = 0; i < fetches_.size(); ++i) { int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col")); VLOG(3) << "Fetching data for [" << idx_to_fetches_[idx] << "]"; PADDLE_ENFORCE_EQ( static_cast(idx), i, platform::errors::InvalidArgument( "Fetch op's col attr(%d) should be equal to the index(%d)", idx, i)); framework::FetchType &fetch_var = framework::GetFetchVariable(*scope, "fetch", idx); auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var); auto type = framework::TransToProtoVarType(fetch.dtype()); auto output = &(output_data->at(i)); output->name = idx_to_fetches_[idx]; bool rst = false; if (type == framework::proto::VarType::FP32) { rst = FetchResult(fetch, output); output->dtype = DistModelDataType::FLOAT32; } else if (type == framework::proto::VarType::INT64) { rst = FetchResult(fetch, output); output->dtype = DistModelDataType::INT64; } else if (type == framework::proto::VarType::INT32) { rst = FetchResult(fetch, output); output->dtype = DistModelDataType::INT32; } else if (type == framework::proto::VarType::FP16) { rst = FetchResult(fetch, output); output->dtype = DistModelDataType::FLOAT16; } else { LOG(ERROR) << "DistModel meets unknown fetch data type. DistModel only " "supports float32, float16, int64 and int32 fetch type " "for now."; } if (!rst) { LOG(ERROR) << "DistModel fails to fetch result " << idx_to_fetches_[idx]; return false; } } return true; } template bool DistModel::FetchResult(const framework::LoDTensor &fetch, DistModelTensor *output_data) { auto shape = phi::vectorize(fetch.dims()); output_data->shape.assign(shape.begin(), shape.end()); const T *data = fetch.data(); int64_t num_elems = fetch.numel(); output_data->data.Resize(num_elems * sizeof(T)); // The output of fetch op is always on the cpu, no need switch on place memcpy(output_data->data.data(), data, num_elems * sizeof(T)); output_data->lod.clear(); for (auto &level : fetch.lod()) { output_data->lod.emplace_back(level.begin(), level.end()); } return true; } bool DistModel::Run(const std::vector &input_data, std::vector *output_data) { VLOG(3) << "DistModel run for once."; DistModelTimer timer; timer.tic(); double feed_elapse = 0; double fleet_exe_elapse = 0; double fetch_elapse = 0; if (!FeedData(input_data, scope_.get())) { LOG(ERROR) << "DistModel failed at feeding data."; return false; } if (config_.enable_timer) { feed_elapse = timer.toc(); LOG(INFO) << "Finish loading data, cost " << feed_elapse << "ms."; } else { VLOG(3) << "Finish loading data."; } fleet_exe->Run(carrier_id_); if (config_.enable_timer) { fleet_exe_elapse = timer.toc(); LOG(INFO) << "Finish FleetExe running, cost " << fleet_exe_elapse - feed_elapse << "ms."; } else { VLOG(3) << "Finish FleetExe running."; } if (!FetchResults(output_data, scope_.get())) { LOG(ERROR) << "DistModel failed at fetching result."; return false; } if (config_.enable_timer) { fetch_elapse = timer.toc(); LOG(INFO) << "Finish fetching data, cost " << fetch_elapse - fleet_exe_elapse << "ms."; LOG(INFO) << "DistModel finish inf, cost " << fetch_elapse << "ms"; } else { VLOG(3) << "Finish fetching data."; VLOG(3) << "DistModel finish inf."; } return true; } } // namespace distributed } // namespace paddle