# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: import all neural network related api under this directory, # including layers, linear, conv, rnn etc. from .activation import celu # noqa: F401 from .activation import elu # noqa: F401 from .activation import elu_ # noqa: F401 from .activation import gelu # noqa: F401 from .activation import hardshrink # noqa: F401 from .activation import hardtanh # noqa: F401 from .activation import hardsigmoid # noqa: F401 from .activation import hardswish # noqa: F401 from .activation import leaky_relu # noqa: F401 from .activation import log_sigmoid # noqa: F401 from .activation import maxout # noqa: F401 from .activation import prelu # noqa: F401 from .activation import relu # noqa: F401 from .activation import relu_ # noqa: F401 from .activation import relu6 # noqa: F401 from .activation import selu # noqa: F401 from .activation import sigmoid # noqa: F401 from .activation import silu # noqa: F401 from .activation import softmax # noqa: F401 from .activation import softmax_ # noqa: F401 from .activation import softplus # noqa: F401 from .activation import softshrink # noqa: F401 from .activation import softsign # noqa: F401 from .activation import swish # noqa: F401 from .activation import mish # noqa: F401 from .activation import tanh # noqa: F401 from .activation import tanh_ # noqa: F401 from .activation import tanhshrink # noqa: F401 from .activation import thresholded_relu # noqa: F401 from .activation import log_softmax # noqa: F401 from .activation import glu # noqa: F401 from .activation import gumbel_softmax # noqa: F401 from .activation import rrelu # noqa: F401 from .common import dropout # noqa: F401 from .common import dropout2d # noqa: F401 from .common import dropout3d # noqa: F401 from .common import alpha_dropout # noqa: F401 from .common import label_smooth # noqa: F401 from .common import pad # noqa: F401 from .common import zeropad2d # noqa: F401 from .common import cosine_similarity # noqa: F401 from .common import unfold # noqa: F401 from .common import fold from .common import interpolate # noqa: F401 from .common import upsample # noqa: F401 from .common import bilinear # noqa: F401 from .common import class_center_sample # noqa: F401 from .conv import conv1d # noqa: F401 from .conv import conv1d_transpose # noqa: F401 from .common import linear # noqa: F401 from .conv import conv2d # noqa: F401 from .conv import conv2d_transpose # noqa: F401 from .conv import conv3d # noqa: F401 from .conv import conv3d_transpose # noqa: F401 from .extension import diag_embed # noqa: F401 from .extension import sequence_mask from .loss import binary_cross_entropy # noqa: F401 from .loss import binary_cross_entropy_with_logits # noqa: F401 from .loss import cross_entropy # noqa: F401 from .loss import dice_loss # noqa: F401 from .loss import hsigmoid_loss # noqa: F401 from .loss import kl_div # noqa: F401 from .loss import l1_loss # noqa: F401 from .loss import log_loss # noqa: F401 from .loss import margin_ranking_loss # noqa: F401 from .loss import mse_loss # noqa: F401 from .loss import nll_loss # noqa: F401 from .loss import npair_loss # noqa: F401 from .loss import sigmoid_focal_loss # noqa: F401 from .loss import smooth_l1_loss # noqa: F401 from .loss import softmax_with_cross_entropy # noqa: F401 from .loss import margin_cross_entropy # noqa: F401 from .loss import square_error_cost # noqa: F401 from .loss import ctc_loss # noqa: F401 from .loss import hinge_embedding_loss # noqa: F401 from .loss import cosine_embedding_loss # noqa: F401 from .loss import triplet_margin_with_distance_loss from .loss import triplet_margin_loss from .norm import batch_norm # noqa: F401 from .norm import instance_norm # noqa: F401 from .norm import layer_norm # noqa: F401 from .norm import local_response_norm # noqa: F401 from .norm import normalize # noqa: F401 from .pooling import avg_pool1d # noqa: F401 from .pooling import avg_pool2d # noqa: F401 from .pooling import avg_pool3d # noqa: F401 from .pooling import max_pool1d # noqa: F401 from .pooling import max_pool2d # noqa: F401 from .pooling import max_pool3d # noqa: F401 from .pooling import adaptive_max_pool1d # noqa: F401 from .pooling import adaptive_max_pool2d # noqa: F401 from .pooling import adaptive_max_pool3d # noqa: F401 from .pooling import adaptive_avg_pool1d # noqa: F401 from .pooling import adaptive_avg_pool2d # noqa: F401 from .pooling import adaptive_avg_pool3d # noqa: F401 from .pooling import max_unpool1d # noqa: F401 from .pooling import max_unpool2d # noqa: F401 from .pooling import max_unpool3d # noqa: F401 from .vision import affine_grid # noqa: F401 from .vision import grid_sample # noqa: F401 from .vision import pixel_shuffle # noqa: F401 from .vision import pixel_unshuffle # noqa: F401 from .vision import channel_shuffle # noqa: F401 from .input import one_hot # noqa: F401 from .input import embedding # noqa: F401 from .extension import gather_tree # noqa: F401 from .extension import temporal_shift # noqa: F401 from .sparse_attention import sparse_attention __all__ = [ # noqa 'celu', 'conv1d', 'conv1d_transpose', 'conv2d', 'conv2d_transpose', 'conv3d', 'conv3d_transpose', 'elu', 'elu_', 'gelu', 'hardshrink', 'hardtanh', 'hardsigmoid', 'hardswish', 'leaky_relu', 'log_sigmoid', 'maxout', 'prelu', 'relu', 'relu_', 'relu6', 'selu', 'softmax', 'softmax_', 'softplus', 'softshrink', 'softsign', 'sigmoid', 'silu', 'swish', 'mish', 'tanh', 'tanh_', 'tanhshrink', 'thresholded_relu', 'log_softmax', 'glu', 'gumbel_softmax', 'diag_embed', 'sequence_mask', 'dropout', 'dropout2d', 'dropout3d', 'alpha_dropout', 'label_smooth', 'linear', 'pad', 'zeropad2d', 'unfold', 'interpolate', 'upsample', 'bilinear', 'cosine_similarity', 'avg_pool1d', 'avg_pool2d', 'avg_pool3d', 'max_pool1d', 'max_pool2d', 'max_pool3d', 'max_unpool1d', 'max_unpool2d', 'max_unpool3d', 'adaptive_avg_pool1d', 'adaptive_avg_pool2d', 'adaptive_avg_pool3d', 'adaptive_max_pool1d', 'adaptive_max_pool2d', 'adaptive_max_pool3d', 'binary_cross_entropy', 'binary_cross_entropy_with_logits', 'cross_entropy', 'dice_loss', 'hsigmoid_loss', 'kl_div', 'l1_loss', 'log_loss', 'mse_loss', 'margin_ranking_loss', 'nll_loss', 'npair_loss', 'sigmoid_focal_loss', 'smooth_l1_loss', 'softmax_with_cross_entropy', 'margin_cross_entropy', 'square_error_cost', 'ctc_loss', 'hinge_embedding_loss', 'affine_grid', 'grid_sample', 'local_response_norm', 'pixel_shuffle', 'pixel_unshuffle', 'channel_shuffle', 'embedding', 'gather_tree', 'one_hot', 'normalize', 'temporal_shift', 'batch_norm', 'layer_norm', 'instance_norm', 'class_center_sample', 'sparse_attention', 'fold', 'cosine_embedding_loss', 'rrelu', 'triplet_margin_with_distance_loss', 'triplet_margin_loss', ]