# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import os import sys import signal import time import socket from contextlib import closing from six import string_types import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle.fluid.unique_name as nameGen from paddle.fluid import core import paddle.distributed.fleet as fleet from paddle.fluid.incubate.fleet.base import role_maker import unittest from multiprocessing import Process import paddle.fluid.layers as layers from functools import reduce from test_collective_multi_nodes import TestCollectiveAPIRunnerBase, runtime_main class TestDygrapgHybridDP(TestCollectiveAPIRunnerBase): def __init__(self): pass def check_pass(self, *args, **kwargs): from common import init_parallel_env import paddle from paddle.distributed import fleet hcg = init_parallel_env("DP16-MP1-PP1-SH1-O1", 2) import numpy as np dp_group = hcg.get_data_parallel_group() np.random.seed(1024) data = np.random.random((10 * dp_group.nranks, 100)).reshape( (dp_group.nranks, -1, 100)) data_part = paddle.to_tensor(data[dp_group.rank]) paddle.distributed.collective.all_reduce(data_part) data_reduced = data_part data_sumed = np.sum(data, axis=0) assert np.allclose(data_sumed, data_reduced.numpy(), rtol=1e-8, atol=1e-8) if __name__ == "__main__": runtime_main(TestDygrapgHybridDP, "dp")