# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import numpy as np quant_input_layers_map = { 'Conv2D': paddle.nn.Conv2D, 'Linear': paddle.nn.Linear, 'AdaptiveAvgPool2D': paddle.nn.AdaptiveAvgPool2D, 'AdaptiveMaxPool2D': paddle.nn.AdaptiveMaxPool2D, 'AvgPool2D': paddle.nn.AvgPool2D, 'MaxPool2D': paddle.nn.MaxPool2D, 'Hardswish': paddle.nn.Hardswish, 'LeakyReLU': paddle.nn.LeakyReLU, 'PReLU': paddle.nn.PReLU, 'ReLU': paddle.nn.ReLU, 'ReLU6': paddle.nn.ReLU6, 'Sigmoid': paddle.nn.Sigmoid, 'Softmax': paddle.nn.Softmax, 'Swish': paddle.nn.Swish, 'Tanh': paddle.nn.Tanh, 'Hardswish': paddle.nn.Hardswish, 'BatchNorm': paddle.nn.BatchNorm, 'GroupNorm': paddle.nn.GroupNorm, 'LayerNorm': paddle.nn.LayerNorm, } fake_quantize_dequantize_types = [ "fake_quantize_dequantize_abs_max", "fake_quantize_dequantize_channel_wise_abs_max", "fake_quantize_dequantize_moving_average_abs_max" ] quant_output_layers = ( paddle.nn.Conv2D, paddle.nn.Conv2DTranspose, paddle.nn.Linear, paddle.nn.AdaptiveAvgPool2D, paddle.nn.AdaptiveMaxPool2D, paddle.nn.AvgPool2D, paddle.nn.MaxPool2D, paddle.nn.BatchNorm, paddle.nn.BatchNorm2D, paddle.nn.LayerNorm, paddle.nn.SyncBatchNorm, paddle.nn.ELU, paddle.nn.GELU, paddle.nn.Hardshrink, paddle.nn.Hardsigmoid, paddle.nn.Hardswish, paddle.nn.Hardtanh, paddle.nn.LeakyReLU, paddle.nn.LogSigmoid, paddle.nn.LogSoftmax, paddle.nn.Maxout, paddle.nn.PReLU, paddle.nn.ReLU, paddle.nn.ReLU6, paddle.nn.SELU, paddle.nn.Sigmoid, paddle.nn.Softmax, paddle.nn.Softplus, paddle.nn.Softshrink, paddle.nn.Softsign, paddle.nn.Swish, paddle.nn.Tanh, paddle.nn.Tanhshrink, paddle.nn.ThresholdedReLU, paddle.nn.Upsample) weight_op_types = [ "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose", "depthwise_conv2d_transpose" ] def load_variable_data(scope, var_name): ''' Load variable value from scope ''' var_node = scope.find_var(var_name) assert var_node is not None, \ "Can not find " + var_name + " in the scope." return np.array(var_node.get_tensor()) def find_previous_op(block, var_name): """ Find the previous op for the input variable. """ for op in block.ops: if var_name in op.output_arg_names: return op def find_next_ops(block, var_name): """ Find all followed ops for the input variable. """ res_ops = [] for op in block.ops: if var_name in op.input_arg_names: res_ops.append(op) return res_ops