# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest from paddle.fluid import metrics import paddle.fluid as fluid import paddle class TestAucOp(OpTest): def setUp(self): self.op_type = "auc" pred = np.random.random((128, 2)).astype("float32") labels = np.random.randint(0, 2, (128, 1)).astype("int64") num_thresholds = 200 slide_steps = 1 stat_pos = np.zeros( (1 + slide_steps) * (num_thresholds + 1) + 1, ).astype("int64") stat_neg = np.zeros( (1 + slide_steps) * (num_thresholds + 1) + 1, ).astype("int64") self.inputs = { 'Predict': pred, 'Label': labels, "StatPos": stat_pos, "StatNeg": stat_neg } self.attrs = { 'curve': 'ROC', 'num_thresholds': num_thresholds, "slide_steps": slide_steps } python_auc = metrics.Auc(name="auc", curve='ROC', num_thresholds=num_thresholds) python_auc.update(pred, labels) pos = python_auc._stat_pos * 2 pos.append(1) neg = python_auc._stat_neg * 2 neg.append(1) self.outputs = { 'AUC': np.array(python_auc.eval()), 'StatPosOut': np.array(pos), 'StatNegOut': np.array(neg) } def test_check_output(self): self.check_output() class TestGlobalAucOp(OpTest): def setUp(self): self.op_type = "auc" pred = np.random.random((128, 2)).astype("float32") labels = np.random.randint(0, 2, (128, 1)).astype("int64") num_thresholds = 200 slide_steps = 0 stat_pos = np.zeros((1, (num_thresholds + 1))).astype("int64") stat_neg = np.zeros((1, (num_thresholds + 1))).astype("int64") self.inputs = { 'Predict': pred, 'Label': labels, "StatPos": stat_pos, "StatNeg": stat_neg } self.attrs = { 'curve': 'ROC', 'num_thresholds': num_thresholds, "slide_steps": slide_steps } python_auc = metrics.Auc(name="auc", curve='ROC', num_thresholds=num_thresholds) python_auc.update(pred, labels) pos = python_auc._stat_pos neg = python_auc._stat_neg self.outputs = { 'AUC': np.array(python_auc.eval()), 'StatPosOut': np.array(pos), 'StatNegOut': np.array(neg) } def test_check_output(self): self.check_output() class TestAucAPI(unittest.TestCase): def test_static(self): paddle.enable_static() data = paddle.static.data(name="input", shape=[-1, 1], dtype="float32") label = paddle.static.data(name="label", shape=[4], dtype="int64") ins_tag_weight = paddle.static.data(name="ins_tag_weight", shape=[4], dtype="float32") result = paddle.static.auc(input=data, label=label, ins_tag_weight=ins_tag_weight) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) x = np.array([[0.0474], [0.5987], [0.7109], [0.9997]]).astype("float32") y = np.array([0, 0, 1, 0]).astype('int64') z = np.array([1, 1, 1, 1]).astype('float32') output = exe.run(feed={ "input": x, "label": y, "ins_tag_weight": z }, fetch_list=[result[0]]) auc_np = np.array([0.66666667]).astype("float32") self.assertTrue(np.allclose(output, auc_np)) class TestAucOpError(unittest.TestCase): def test_errors(self): with fluid.program_guard(fluid.Program(), fluid.Program()): def test_type1(): data1 = fluid.data(name="input1", shape=[-1, 2], dtype="int") label1 = fluid.data(name="label1", shape=[-1], dtype="int") ins_tag_w1 = paddle.static.data(name="label1", shape=[-1], dtype="int") result1 = paddle.static.auc(input=data1, label=label1, ins_tag_weight=ins_tag_w1) self.assertRaises(TypeError, test_type1) def test_type2(): data2 = fluid.data(name="input2", shape=[-1, 2], dtype="float32") label2 = fluid.data(name="label2", shape=[-1], dtype="float32") result2 = fluid.layers.auc(input=data2, label=label2) self.assertRaises(TypeError, test_type2) if __name__ == '__main__': unittest.main()