// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/distributed/ps/table/common_graph_table.h" #include #include #include #include #include #include "paddle/fluid/distributed/common/utils.h" #include "paddle/fluid/distributed/ps/table/graph/graph_node.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/string/printf.h" #include "paddle/fluid/string/string_helper.h" namespace paddle { namespace distributed { #ifdef PADDLE_WITH_HETERPS paddle::framework::GpuPsCommGraph GraphTable::make_gpu_ps_graph( std::vector ids) { std::vector> bags(task_pool_size_); for (auto x : ids) { int location = x % shard_num % task_pool_size_; bags[location].push_back(x); } std::vector> tasks; std::vector edge_array[task_pool_size_]; std::vector node_array[task_pool_size_]; for (int i = 0; i < (int)bags.size(); i++) { if (bags[i].size() > 0) { tasks.push_back(_shards_task_pool[i]->enqueue([&, i, this]() -> int { paddle::framework::GpuPsGraphNode x; for (int j = 0; j < (int)bags[i].size(); j++) { Node *v = find_node(bags[i][j]); x.node_id = bags[i][j]; if (v == NULL) { x.neighbor_size = 0; x.neighbor_offset = 0; node_array[i].push_back(x); } else { x.neighbor_size = v->get_neighbor_size(); x.neighbor_offset = edge_array[i].size(); node_array[i].push_back(x); for (int k = 0; k < x.neighbor_size; k++) { edge_array[i].push_back(v->get_neighbor_id(k)); } } } return 0; })); } } for (int i = 0; i < (int)tasks.size(); i++) tasks[i].get(); paddle::framework::GpuPsCommGraph res; int tot_len = 0; for (int i = 0; i < task_pool_size_; i++) { tot_len += (int)edge_array[i].size(); } res.neighbor_size = tot_len; res.node_size = ids.size(); res.neighbor_list = new int64_t[tot_len]; res.node_list = new paddle::framework::GpuPsGraphNode[ids.size()]; int offset = 0, ind = 0; for (int i = 0; i < task_pool_size_; i++) { for (int j = 0; j < (int)node_array[i].size(); j++) { res.node_list[ind] = node_array[i][j]; res.node_list[ind++].neighbor_offset += offset; } for (int j = 0; j < (int)edge_array[i].size(); j++) { res.neighbor_list[offset + j] = edge_array[i][j]; } offset += edge_array[i].size(); } return res; } int32_t GraphTable::add_node_to_ssd(int64_t src_id, char *data, int len) { if (_db != NULL) _db->put(src_id % shard_num % task_pool_size_, (char *)&src_id, sizeof(uint64_t), (char *)data, sizeof(int64_t) * len); return 0; } char *GraphTable::random_sample_neighbor_from_ssd( int64_t id, int sample_size, const std::shared_ptr rng, int &actual_size) { if (_db == NULL) { actual_size = 0; return NULL; } std::string str; if (_db->get(id % shard_num % task_pool_size_, (char *)&id, sizeof(uint64_t), str) == 0) { int64_t *data = ((int64_t *)str.c_str()); int n = str.size() / sizeof(int64_t); std::unordered_map m; // std::vector res; int sm_size = std::min(n, sample_size); actual_size = sm_size * Node::id_size; char *buff = new char[actual_size]; for (int i = 0; i < sm_size; i++) { std::uniform_int_distribution distrib(0, n - i - 1); int t = distrib(*rng); // int t = rand() % (n-i); int pos = 0; auto iter = m.find(t); if (iter != m.end()) { pos = iter->second; } else { pos = t; } auto iter2 = m.find(n - i - 1); int key2 = iter2 == m.end() ? n - i - 1 : iter2->second; m[t] = key2; m.erase(n - i - 1); memcpy(buff + i * Node::id_size, &data[pos], Node::id_size); // res.push_back(data[pos]); } return buff; } actual_size = 0; return NULL; } #endif /* int CompleteGraphSampler::run_graph_sampling() { pthread_rwlock_t *rw_lock = graph_table->rw_lock.get(); pthread_rwlock_rdlock(rw_lock); std::cout << "in graph sampling" << std::endl; sample_nodes.clear(); sample_neighbors.clear(); sample_res.clear(); sample_nodes.resize(gpu_num); sample_neighbors.resize(gpu_num); sample_res.resize(gpu_num); std::vector>> sample_nodes_ex(graph_table->task_pool_size_); std::vector>> sample_neighbors_ex( graph_table->task_pool_size_); for (int i = 0; i < graph_table->task_pool_size_; i++) { sample_nodes_ex[i].resize(gpu_num); sample_neighbors_ex[i].resize(gpu_num); } std::vector> tasks; for (size_t i = 0; i < graph_table->shards.size(); ++i) { tasks.push_back( graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) return 0; paddle::framework::GpuPsGraphNode node; std::vector &v = this->graph_table->shards[i]->get_bucket(); size_t ind = i % this->graph_table->task_pool_size_; for (size_t j = 0; j < v.size(); j++) { size_t location = v[j]->get_id() % this->gpu_num; node.node_id = v[j]->get_id(); node.neighbor_size = v[j]->get_neighbor_size(); node.neighbor_offset = (int)sample_neighbors_ex[ind][location].size(); sample_nodes_ex[ind][location].emplace_back(node); for (int k = 0; k < node.neighbor_size; k++) sample_neighbors_ex[ind][location].push_back( v[j]->get_neighbor_id(k)); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); tasks.clear(); for (int i = 0; i < gpu_num; i++) { tasks.push_back( graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) return 0; int total_offset = 0; size_t ind = i % this->graph_table->task_pool_size_; for (int j = 0; j < this->graph_table->task_pool_size_; j++) { for (size_t k = 0; k < sample_nodes_ex[j][ind].size(); k++) { sample_nodes[ind].push_back(sample_nodes_ex[j][ind][k]); sample_nodes[ind].back().neighbor_offset += total_offset; } size_t neighbor_size = sample_neighbors_ex[j][ind].size(); total_offset += neighbor_size; for (size_t k = 0; k < neighbor_size; k++) { sample_neighbors[ind].push_back( sample_neighbors_ex[j][ind][k]); } } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } for (int i = 0; i < gpu_num; i++) { sample_res[i].node_list = sample_nodes[i].data(); sample_res[i].neighbor_list = sample_neighbors[i].data(); sample_res[i].node_size = sample_nodes[i].size(); sample_res[i].neighbor_size = sample_neighbors[i].size(); } pthread_rwlock_unlock(rw_lock); if (this->status == GraphSamplerStatus::terminating) { return 0; } callback(sample_res); return 0; } void CompleteGraphSampler::init(size_t gpu_num, GraphTable *graph_table, std::vector args) { this->gpu_num = gpu_num; this->graph_table = graph_table; } int BasicBfsGraphSampler::run_graph_sampling() { pthread_rwlock_t *rw_lock = graph_table->rw_lock.get(); pthread_rwlock_rdlock(rw_lock); while (rounds > 0 && status == GraphSamplerStatus::running) { for (size_t i = 0; i < sample_neighbors_map.size(); i++) { sample_neighbors_map[i].clear(); } sample_neighbors_map.clear(); std::vector nodes_left(graph_table->shards.size(), node_num_for_each_shard); std::promise prom; std::future fut = prom.get_future(); sample_neighbors_map.resize(graph_table->task_pool_size_); int task_size = 0; std::vector> tasks; int init_size = 0; //__sync_fetch_and_add std::function bfs = [&, this](int i, int id) -> int { if (this->status == GraphSamplerStatus::terminating) { int task_left = __sync_sub_and_fetch(&task_size, 1); if (task_left == 0) { prom.set_value(0); } return 0; } size_t ind = i % this->graph_table->task_pool_size_; if (nodes_left[i] > 0) { auto iter = sample_neighbors_map[ind].find(id); if (iter == sample_neighbors_map[ind].end()) { Node *node = graph_table->shards[i]->find_node(id); if (node != NULL) { nodes_left[i]--; sample_neighbors_map[ind][id] = std::vector(); iter = sample_neighbors_map[ind].find(id); size_t edge_fetch_size = std::min((size_t) this->edge_num_for_each_node, node->get_neighbor_size()); for (size_t k = 0; k < edge_fetch_size; k++) { int64_t neighbor_id = node->get_neighbor_id(k); int node_location = neighbor_id % this->graph_table->shard_num % this->graph_table->task_pool_size_; __sync_add_and_fetch(&task_size, 1); graph_table->_shards_task_pool[node_location]->enqueue( bfs, neighbor_id % this->graph_table->shard_num, neighbor_id); iter->second.push_back(neighbor_id); } } } } int task_left = __sync_sub_and_fetch(&task_size, 1); if (task_left == 0) { prom.set_value(0); } return 0; }; for (size_t i = 0; i < graph_table->shards.size(); ++i) { std::vector &v = graph_table->shards[i]->get_bucket(); if (v.size() > 0) { int search_size = std::min(init_search_size, (int)v.size()); for (int k = 0; k < search_size; k++) { init_size++; __sync_add_and_fetch(&task_size, 1); int64_t id = v[k]->get_id(); graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue(bfs, i, id); } } // if } if (init_size == 0) { prom.set_value(0); } fut.get(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } VLOG(0) << "BasicBfsGraphSampler finishes the graph searching task"; sample_nodes.clear(); sample_neighbors.clear(); sample_res.clear(); sample_nodes.resize(gpu_num); sample_neighbors.resize(gpu_num); sample_res.resize(gpu_num); std::vector>> sample_nodes_ex(graph_table->task_pool_size_); std::vector>> sample_neighbors_ex( graph_table->task_pool_size_); for (int i = 0; i < graph_table->task_pool_size_; i++) { sample_nodes_ex[i].resize(gpu_num); sample_neighbors_ex[i].resize(gpu_num); } tasks.clear(); for (size_t i = 0; i < (size_t)graph_table->task_pool_size_; ++i) { tasks.push_back( graph_table->_shards_task_pool[i]->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) { return 0; } paddle::framework::GpuPsGraphNode node; auto iter = sample_neighbors_map[i].begin(); size_t ind = i; for (; iter != sample_neighbors_map[i].end(); iter++) { size_t location = iter->first % this->gpu_num; node.node_id = iter->first; node.neighbor_size = iter->second.size(); node.neighbor_offset = (int)sample_neighbors_ex[ind][location].size(); sample_nodes_ex[ind][location].emplace_back(node); for (auto k : iter->second) sample_neighbors_ex[ind][location].push_back(k); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) { tasks[i].get(); sample_neighbors_map[i].clear(); } tasks.clear(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } for (size_t i = 0; i < (size_t)gpu_num; i++) { tasks.push_back( graph_table->_shards_task_pool[i % graph_table->task_pool_size_] ->enqueue([&, i, this]() -> int { if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } int total_offset = 0; for (int j = 0; j < this->graph_table->task_pool_size_; j++) { for (size_t k = 0; k < sample_nodes_ex[j][i].size(); k++) { sample_nodes[i].push_back(sample_nodes_ex[j][i][k]); sample_nodes[i].back().neighbor_offset += total_offset; } size_t neighbor_size = sample_neighbors_ex[j][i].size(); total_offset += neighbor_size; for (size_t k = 0; k < neighbor_size; k++) { sample_neighbors[i].push_back(sample_neighbors_ex[j][i][k]); } } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); if (this->status == GraphSamplerStatus::terminating) { pthread_rwlock_unlock(rw_lock); return 0; } for (int i = 0; i < gpu_num; i++) { sample_res[i].node_list = sample_nodes[i].data(); sample_res[i].neighbor_list = sample_neighbors[i].data(); sample_res[i].node_size = sample_nodes[i].size(); sample_res[i].neighbor_size = sample_neighbors[i].size(); } pthread_rwlock_unlock(rw_lock); if (this->status == GraphSamplerStatus::terminating) { return 0; } callback(sample_res); rounds--; if (rounds > 0) { for (int i = 0; i < interval && this->status == GraphSamplerStatus::running; i++) { std::this_thread::sleep_for(std::chrono::seconds(1)); } } VLOG(0)<<"bfs returning"; } return 0; } void BasicBfsGraphSampler::init(size_t gpu_num, GraphTable *graph_table, std::vector args) { this->gpu_num = gpu_num; this->graph_table = graph_table; init_search_size = args.size() > 0 ? std::stoi(args[0]) : 10; node_num_for_each_shard = args.size() > 1 ? std::stoi(args[1]) : 10; edge_num_for_each_node = args.size() > 2 ? std::stoi(args[2]) : 10; rounds = args.size() > 3 ? std::stoi(args[3]) : 1; interval = args.size() > 4 ? std::stoi(args[4]) : 60; } #endif */ std::vector GraphShard::get_batch(int start, int end, int step) { if (start < 0) start = 0; std::vector res; for (int pos = start; pos < std::min(end, (int)bucket.size()); pos += step) { res.push_back(bucket[pos]); } return res; } size_t GraphShard::get_size() { return bucket.size(); } int32_t GraphTable::add_comm_edge(int64_t src_id, int64_t dst_id) { size_t src_shard_id = src_id % shard_num; if (src_shard_id >= shard_end || src_shard_id < shard_start) { return -1; } size_t index = src_shard_id - shard_start; VLOG(0) << "index add edge " << src_id << " " << dst_id; shards[index]->add_graph_node(src_id)->build_edges(false); shards[index]->add_neighbor(src_id, dst_id, 1.0); return 0; } int32_t GraphTable::add_graph_node(std::vector &id_list, std::vector &is_weight_list) { size_t node_size = id_list.size(); std::vector>> batch(task_pool_size_); for (size_t i = 0; i < node_size; i++) { size_t shard_id = id_list[i] % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { continue; } batch[get_thread_pool_index(id_list[i])].push_back( {id_list[i], i < is_weight_list.size() ? is_weight_list[i] : false}); } std::vector> tasks; for (size_t i = 0; i < batch.size(); ++i) { if (!batch[i].size()) continue; tasks.push_back(_shards_task_pool[i]->enqueue([&batch, i, this]() -> int { for (auto &p : batch[i]) { size_t index = p.first % this->shard_num - this->shard_start; this->shards[index]->add_graph_node(p.first)->build_edges(p.second); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } int32_t GraphTable::remove_graph_node(std::vector &id_list) { size_t node_size = id_list.size(); std::vector> batch(task_pool_size_); for (size_t i = 0; i < node_size; i++) { size_t shard_id = id_list[i] % shard_num; if (shard_id >= shard_end || shard_id < shard_start) continue; batch[get_thread_pool_index(id_list[i])].push_back(id_list[i]); } std::vector> tasks; for (size_t i = 0; i < batch.size(); ++i) { if (!batch[i].size()) continue; tasks.push_back(_shards_task_pool[i]->enqueue([&batch, i, this]() -> int { for (auto &p : batch[i]) { size_t index = p % this->shard_num - this->shard_start; this->shards[index]->delete_node(p); } return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } void GraphShard::clear() { for (size_t i = 0; i < bucket.size(); i++) { delete bucket[i]; } bucket.clear(); node_location.clear(); } GraphShard::~GraphShard() { clear(); } void GraphShard::delete_node(int64_t id) { auto iter = node_location.find(id); if (iter == node_location.end()) return; int pos = iter->second; delete bucket[pos]; if (pos != (int)bucket.size() - 1) { bucket[pos] = bucket.back(); node_location[bucket.back()->get_id()] = pos; } node_location.erase(id); bucket.pop_back(); } GraphNode *GraphShard::add_graph_node(int64_t id) { if (node_location.find(id) == node_location.end()) { node_location[id] = bucket.size(); bucket.push_back(new GraphNode(id)); } return (GraphNode *)bucket[node_location[id]]; } GraphNode *GraphShard::add_graph_node(Node *node) { auto id = node->get_id(); if (node_location.find(id) == node_location.end()) { node_location[id] = bucket.size(); bucket.push_back(node); } return (GraphNode *)bucket[node_location[id]]; } FeatureNode *GraphShard::add_feature_node(int64_t id) { if (node_location.find(id) == node_location.end()) { node_location[id] = bucket.size(); bucket.push_back(new FeatureNode(id)); } return (FeatureNode *)bucket[node_location[id]]; } void GraphShard::add_neighbor(int64_t id, int64_t dst_id, float weight) { find_node(id)->add_edge(dst_id, weight); } Node *GraphShard::find_node(int64_t id) { auto iter = node_location.find(id); return iter == node_location.end() ? nullptr : bucket[iter->second]; } GraphTable::~GraphTable() { for (auto p : shards) { delete p; } for (auto p : extra_shards) { delete p; } shards.clear(); extra_shards.clear(); } int32_t GraphTable::load_graph_split_config(const std::string &path) { VLOG(4) << "in server side load graph split config\n"; std::ifstream file(path); std::string line; while (std::getline(file, line)) { auto values = paddle::string::split_string(line, "\t"); if (values.size() < 2) continue; size_t index = (size_t)std::stoi(values[0]); if (index != _shard_idx) continue; auto dst_id = std::stoull(values[1]); extra_nodes.insert(dst_id); } if (extra_nodes.size() != 0) use_duplicate_nodes = true; return 0; } int32_t GraphTable::Load(const std::string &path, const std::string ¶m) { bool load_edge = (param[0] == 'e'); bool load_node = (param[0] == 'n'); if (load_edge) { bool reverse_edge = (param[1] == '<'); return this->load_edges(path, reverse_edge); } if (load_node) { std::string node_type = param.substr(1); return this->load_nodes(path, node_type); } return 0; } int32_t GraphTable::get_nodes_ids_by_ranges( std::vector> ranges, std::vector &res) { int start = 0, end, index = 0, total_size = 0; res.clear(); std::vector>> tasks; for (size_t i = 0; i < shards.size() && index < (int)ranges.size(); i++) { end = total_size + shards[i]->get_size(); start = total_size; while (start < end && index < (int)ranges.size()) { if (ranges[index].second <= start) index++; else if (ranges[index].first >= end) { break; } else { int first = std::max(ranges[index].first, start); int second = std::min(ranges[index].second, end); start = second; first -= total_size; second -= total_size; tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [this, first, second, i]() -> std::vector { return shards[i]->get_ids_by_range(first, second); })); } } total_size += shards[i]->get_size(); } for (size_t i = 0; i < tasks.size(); i++) { auto vec = tasks[i].get(); for (auto &id : vec) { res.push_back(id); std::swap(res[rand() % res.size()], res[(int)res.size() - 1]); } } return 0; } int32_t GraphTable::load_nodes(const std::string &path, std::string node_type) { auto paths = paddle::string::split_string(path, ";"); int64_t count = 0; int64_t valid_count = 0; for (auto path : paths) { std::ifstream file(path); std::string line; while (std::getline(file, line)) { auto values = paddle::string::split_string(line, "\t"); if (values.size() < 2) continue; auto id = std::stoull(values[1]); size_t shard_id = id % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { VLOG(4) << "will not load " << id << " from " << path << ", please check id distribution"; continue; } if (count % 1000000 == 0) { VLOG(0) << count << " nodes are loaded from filepath"; VLOG(0) << line; } count++; std::string nt = values[0]; if (nt != node_type) { continue; } size_t index = shard_id - shard_start; auto node = shards[index]->add_feature_node(id); node->set_feature_size(feat_name.size()); for (size_t slice = 2; slice < values.size(); slice++) { auto feat = this->parse_feature(values[slice]); if (feat.first >= 0) { node->set_feature(feat.first, feat.second); } else { VLOG(4) << "Node feature: " << values[slice] << " not in feature_map."; } } valid_count++; } } VLOG(0) << valid_count << "/" << count << " nodes in type " << node_type << " are loaded successfully in " << path; return 0; } int32_t GraphTable::load_edges(const std::string &path, bool reverse_edge) { // #ifdef PADDLE_WITH_HETERPS // if (gpups_mode) pthread_rwlock_rdlock(rw_lock.get()); // #endif auto paths = paddle::string::split_string(path, ";"); int64_t count = 0; std::string sample_type = "random"; bool is_weighted = false; int valid_count = 0; int extra_alloc_index = 0; for (auto path : paths) { std::ifstream file(path); std::string line; while (std::getline(file, line)) { auto values = paddle::string::split_string(line, "\t"); count++; if (values.size() < 2) continue; auto src_id = std::stoull(values[0]); auto dst_id = std::stoull(values[1]); if (reverse_edge) { std::swap(src_id, dst_id); } float weight = 1; if (values.size() == 3) { weight = std::stof(values[2]); sample_type = "weighted"; is_weighted = true; } size_t src_shard_id = src_id % shard_num; if (src_shard_id >= shard_end || src_shard_id < shard_start) { if (use_duplicate_nodes == false || extra_nodes.find(src_id) == extra_nodes.end()) { VLOG(4) << "will not load " << src_id << " from " << path << ", please check id distribution"; continue; } int index; if (extra_nodes_to_thread_index.find(src_id) != extra_nodes_to_thread_index.end()) { index = extra_nodes_to_thread_index[src_id]; } else { index = extra_alloc_index++; extra_alloc_index %= task_pool_size_; extra_nodes_to_thread_index[src_id] = index; } extra_shards[index]->add_graph_node(src_id)->build_edges(is_weighted); extra_shards[index]->add_neighbor(src_id, dst_id, weight); valid_count++; continue; } if (count % 1000000 == 0) { VLOG(0) << count << " edges are loaded from filepath"; VLOG(0) << line; } size_t index = src_shard_id - shard_start; shards[index]->add_graph_node(src_id)->build_edges(is_weighted); shards[index]->add_neighbor(src_id, dst_id, weight); valid_count++; } } VLOG(0) << valid_count << "/" << count << " edges are loaded successfully in " << path; std::vector used(task_pool_size_, 0); // Build Sampler j for (auto &shard : shards) { auto bucket = shard->get_bucket(); for (size_t i = 0; i < bucket.size(); i++) { bucket[i]->build_sampler(sample_type); used[get_thread_pool_index(bucket[i]->get_id())]++; } } /*----------------------- relocate the duplicate nodes to make them distributed evenly among threads. */ if (!use_duplicate_nodes) { // #ifdef PADDLE_WITH_HETERPS // if (gpups_mode) pthread_rwlock_unlock(rw_lock.get()); // #endif return 0; } for (auto &shard : extra_shards) { auto bucket = shard->get_bucket(); for (size_t i = 0; i < bucket.size(); i++) { bucket[i]->build_sampler(sample_type); } } int size = extra_nodes_to_thread_index.size(); if (size == 0) return 0; std::vector index; for (int i = 0; i < (int)used.size(); i++) index.push_back(i); sort(index.begin(), index.end(), [&](int &a, int &b) { return used[a] < used[b]; }); std::vector alloc(index.size(), 0), has_alloc(index.size(), 0); int t = 1, aim = 0, mod = 0; for (; t < (int)used.size(); t++) { if ((used[index[t]] - used[index[t - 1]]) * t >= size) { break; } else { size -= (used[index[t]] - used[index[t - 1]]) * t; } } aim = used[index[t - 1]] + size / t; mod = size % t; for (int x = t - 1; x >= 0; x--) { alloc[index[x]] = aim; if (t - x <= mod) alloc[index[x]]++; alloc[index[x]] -= used[index[x]]; } std::vector vec[index.size()]; for (auto p : extra_nodes_to_thread_index) { has_alloc[p.second]++; vec[p.second].push_back(p.first); } sort(index.begin(), index.end(), [&](int &a, int &b) { return has_alloc[a] - alloc[a] < has_alloc[b] - alloc[b]; }); int left = 0, right = (int)index.size() - 1; while (left < right) { if (has_alloc[index[right]] - alloc[index[right]] == 0) break; int x = std::min(alloc[index[left]] - has_alloc[index[left]], has_alloc[index[right]] - alloc[index[right]]); has_alloc[index[left]] += x; has_alloc[index[right]] -= x; int64_t id; while (x--) { id = vec[index[right]].back(); vec[index[right]].pop_back(); extra_nodes_to_thread_index[id] = index[left]; vec[index[left]].push_back(id); } if (has_alloc[index[right]] - alloc[index[right]] == 0) right--; if (alloc[index[left]] - has_alloc[index[left]] == 0) left++; } std::vector extra_shards_copy; for (int i = 0; i < task_pool_size_; ++i) { extra_shards_copy.push_back(new GraphShard()); } for (auto &shard : extra_shards) { auto &bucket = shard->get_bucket(); auto &node_location = shard->get_node_location(); while (bucket.size()) { Node *temp = bucket.back(); bucket.pop_back(); node_location.erase(temp->get_id()); extra_shards_copy[extra_nodes_to_thread_index[temp->get_id()]] ->add_graph_node(temp); } } for (int i = 0; i < task_pool_size_; ++i) { delete extra_shards[i]; extra_shards[i] = extra_shards_copy[i]; } // #ifdef PADDLE_WITH_HETERPS // if (gpups_mode) pthread_rwlock_unlock(rw_lock.get()); // #endif return 0; } Node *GraphTable::find_node(int64_t id) { size_t shard_id = id % shard_num; if (shard_id >= shard_end || shard_id < shard_start) { if (use_duplicate_nodes == false || extra_nodes_to_thread_index.size() == 0) return nullptr; auto iter = extra_nodes_to_thread_index.find(id); if (iter == extra_nodes_to_thread_index.end()) return nullptr; else { return extra_shards[iter->second]->find_node(id); } } size_t index = shard_id - shard_start; Node *node = shards[index]->find_node(id); return node; } uint32_t GraphTable::get_thread_pool_index(int64_t node_id) { if (use_duplicate_nodes == false || extra_nodes_to_thread_index.size() == 0) return node_id % shard_num % shard_num_per_server % task_pool_size_; size_t src_shard_id = node_id % shard_num; if (src_shard_id >= shard_end || src_shard_id < shard_start) { auto iter = extra_nodes_to_thread_index.find(node_id); if (iter != extra_nodes_to_thread_index.end()) { return iter->second; } } return src_shard_id % shard_num_per_server % task_pool_size_; } uint32_t GraphTable::get_thread_pool_index_by_shard_index(int64_t shard_index) { return shard_index % shard_num_per_server % task_pool_size_; } int32_t GraphTable::clear_nodes() { std::vector> tasks; for (size_t i = 0; i < shards.size(); i++) { tasks.push_back( _shards_task_pool[i % task_pool_size_]->enqueue([this, i]() -> int { this->shards[i]->clear(); return 0; })); } for (size_t i = 0; i < extra_shards.size(); i++) { tasks.push_back(_shards_task_pool[i]->enqueue([this, i]() -> int { this->extra_shards[i]->clear(); return 0; })); } for (size_t i = 0; i < tasks.size(); i++) tasks[i].get(); return 0; } int32_t GraphTable::random_sample_nodes(int sample_size, std::unique_ptr &buffer, int &actual_size) { int total_size = 0; for (int i = 0; i < (int)shards.size(); i++) { total_size += shards[i]->get_size(); } if (sample_size > total_size) sample_size = total_size; int range_num = random_sample_nodes_ranges; if (range_num > sample_size) range_num = sample_size; if (sample_size == 0 || range_num == 0) return 0; std::vector ranges_len, ranges_pos; int remain = sample_size, last_pos = -1, num; std::set separator_set; for (int i = 0; i < range_num - 1; i++) { while (separator_set.find(num = rand() % (sample_size - 1)) != separator_set.end()) ; separator_set.insert(num); } for (auto p : separator_set) { ranges_len.push_back(p - last_pos); last_pos = p; } ranges_len.push_back(sample_size - 1 - last_pos); remain = total_size - sample_size + range_num; separator_set.clear(); for (int i = 0; i < range_num; i++) { while (separator_set.find(num = rand() % remain) != separator_set.end()) ; separator_set.insert(num); } int used = 0, index = 0; last_pos = -1; for (auto p : separator_set) { used += p - last_pos - 1; last_pos = p; ranges_pos.push_back(used); used += ranges_len[index++]; } std::vector> first_half, second_half; int start_index = rand() % total_size; for (size_t i = 0; i < ranges_len.size() && i < ranges_pos.size(); i++) { if (ranges_pos[i] + ranges_len[i] - 1 + start_index < total_size) first_half.push_back({ranges_pos[i] + start_index, ranges_pos[i] + ranges_len[i] + start_index}); else if (ranges_pos[i] + start_index >= total_size) { second_half.push_back( {ranges_pos[i] + start_index - total_size, ranges_pos[i] + ranges_len[i] + start_index - total_size}); } else { first_half.push_back({ranges_pos[i] + start_index, total_size}); second_half.push_back( {0, ranges_pos[i] + ranges_len[i] + start_index - total_size}); } } for (auto &pair : first_half) second_half.push_back(pair); std::vector res; get_nodes_ids_by_ranges(second_half, res); actual_size = res.size() * sizeof(int64_t); buffer.reset(new char[actual_size]); char *pointer = buffer.get(); memcpy(pointer, res.data(), actual_size); return 0; } int32_t GraphTable::random_sample_neighbors( int64_t *node_ids, int sample_size, std::vector> &buffers, std::vector &actual_sizes, bool need_weight) { size_t node_num = buffers.size(); std::function char_del = [](char *c) { delete[] c; }; std::vector> tasks; std::vector> seq_id(task_pool_size_); std::vector> id_list(task_pool_size_); size_t index; for (size_t idx = 0; idx < node_num; ++idx) { index = get_thread_pool_index(node_ids[idx]); seq_id[index].emplace_back(idx); id_list[index].emplace_back(node_ids[idx], sample_size, need_weight); } for (int i = 0; i < (int)seq_id.size(); i++) { if (seq_id[i].size() == 0) continue; tasks.push_back(_shards_task_pool[i]->enqueue([&, i, this]() -> int { int64_t node_id; std::vector> r; LRUResponse response = LRUResponse::blocked; if (use_cache) { response = scaled_lru->query(i, id_list[i].data(), id_list[i].size(), r); } int index = 0; uint32_t idx; std::vector sample_res; std::vector sample_keys; auto &rng = _shards_task_rng_pool[i]; for (size_t k = 0; k < id_list[i].size(); k++) { if (index < (int)r.size() && r[index].first.node_key == id_list[i][k].node_key) { idx = seq_id[i][k]; actual_sizes[idx] = r[index].second.actual_size; buffers[idx] = r[index].second.buffer; index++; } else { node_id = id_list[i][k].node_key; Node *node = find_node(node_id); idx = seq_id[i][k]; int &actual_size = actual_sizes[idx]; if (node == nullptr) { #ifdef PADDLE_WITH_HETERPS if (search_level == 2) { char *buffer_addr = random_sample_neighbor_from_ssd( node_id, sample_size, rng, actual_size); if (actual_size != 0) { std::shared_ptr &buffer = buffers[idx]; buffer.reset(buffer_addr, char_del); } continue; } #endif actual_size = 0; continue; } std::shared_ptr &buffer = buffers[idx]; std::vector res = node->sample_k(sample_size, rng); actual_size = res.size() * (need_weight ? (Node::id_size + Node::weight_size) : Node::id_size); int offset = 0; int64_t id; float weight; char *buffer_addr = new char[actual_size]; if (response == LRUResponse::ok) { sample_keys.emplace_back(node_id, sample_size, need_weight); sample_res.emplace_back(actual_size, buffer_addr); buffer = sample_res.back().buffer; } else { buffer.reset(buffer_addr, char_del); } for (int &x : res) { id = node->get_neighbor_id(x); memcpy(buffer_addr + offset, &id, Node::id_size); offset += Node::id_size; if (need_weight) { weight = node->get_neighbor_weight(x); memcpy(buffer_addr + offset, &weight, Node::weight_size); offset += Node::weight_size; } } } } if (sample_res.size()) { scaled_lru->insert(i, sample_keys.data(), sample_res.data(), sample_keys.size()); } return 0; })); } for (auto &t : tasks) { t.get(); } return 0; } int32_t GraphTable::get_node_feat(const std::vector &node_ids, const std::vector &feature_names, std::vector> &res) { size_t node_num = node_ids.size(); std::vector> tasks; for (size_t idx = 0; idx < node_num; ++idx) { int64_t node_id = node_ids[idx]; tasks.push_back(_shards_task_pool[get_thread_pool_index(node_id)]->enqueue( [&, idx, node_id]() -> int { Node *node = find_node(node_id); if (node == nullptr) { return 0; } for (int feat_idx = 0; feat_idx < (int)feature_names.size(); ++feat_idx) { const std::string &feature_name = feature_names[feat_idx]; if (feat_id_map.find(feature_name) != feat_id_map.end()) { // res[feat_idx][idx] = // node->get_feature(feat_id_map[feature_name]); auto feat = node->get_feature(feat_id_map[feature_name]); res[feat_idx][idx] = feat; } } return 0; })); } for (size_t idx = 0; idx < node_num; ++idx) { tasks[idx].get(); } return 0; } int32_t GraphTable::set_node_feat( const std::vector &node_ids, const std::vector &feature_names, const std::vector> &res) { size_t node_num = node_ids.size(); std::vector> tasks; for (size_t idx = 0; idx < node_num; ++idx) { int64_t node_id = node_ids[idx]; tasks.push_back(_shards_task_pool[get_thread_pool_index(node_id)]->enqueue( [&, idx, node_id]() -> int { size_t index = node_id % this->shard_num - this->shard_start; auto node = shards[index]->add_feature_node(node_id); node->set_feature_size(this->feat_name.size()); for (int feat_idx = 0; feat_idx < (int)feature_names.size(); ++feat_idx) { const std::string &feature_name = feature_names[feat_idx]; if (feat_id_map.find(feature_name) != feat_id_map.end()) { node->set_feature(feat_id_map[feature_name], res[feat_idx][idx]); } } return 0; })); } for (size_t idx = 0; idx < node_num; ++idx) { tasks[idx].get(); } return 0; } std::pair GraphTable::parse_feature( std::string feat_str) { // Return (feat_id, btyes) if name are in this->feat_name, else return (-1, // "") auto fields = paddle::string::split_string(feat_str, " "); if (this->feat_id_map.count(fields[0])) { int32_t id = this->feat_id_map[fields[0]]; std::string dtype = this->feat_dtype[id]; std::vector values(fields.begin() + 1, fields.end()); if (dtype == "feasign") { return std::make_pair( int32_t(id), paddle::string::join_strings(values, ' ')); } else if (dtype == "string") { return std::make_pair( int32_t(id), paddle::string::join_strings(values, ' ')); } else if (dtype == "float32") { return std::make_pair( int32_t(id), FeatureNode::parse_value_to_bytes(values)); } else if (dtype == "float64") { return std::make_pair( int32_t(id), FeatureNode::parse_value_to_bytes(values)); } else if (dtype == "int32") { return std::make_pair( int32_t(id), FeatureNode::parse_value_to_bytes(values)); } else if (dtype == "int64") { return std::make_pair( int32_t(id), FeatureNode::parse_value_to_bytes(values)); } } return std::make_pair(-1, ""); } int32_t GraphTable::pull_graph_list(int start, int total_size, std::unique_ptr &buffer, int &actual_size, bool need_feature, int step) { if (start < 0) start = 0; int size = 0, cur_size; std::vector>> tasks; for (size_t i = 0; i < shards.size() && total_size > 0; i++) { cur_size = shards[i]->get_size(); if (size + cur_size <= start) { size += cur_size; continue; } int count = std::min(1 + (size + cur_size - start - 1) / step, total_size); int end = start + (count - 1) * step + 1; tasks.push_back(_shards_task_pool[i % task_pool_size_]->enqueue( [this, i, start, end, step, size]() -> std::vector { return this->shards[i]->get_batch(start - size, end - size, step); })); start += count * step; total_size -= count; size += cur_size; } for (size_t i = 0; i < tasks.size(); ++i) { tasks[i].wait(); } size = 0; std::vector> res; for (size_t i = 0; i < tasks.size(); i++) { res.push_back(tasks[i].get()); for (size_t j = 0; j < res.back().size(); j++) { size += res.back()[j]->get_size(need_feature); } } char *buffer_addr = new char[size]; buffer.reset(buffer_addr); int index = 0; for (size_t i = 0; i < res.size(); i++) { for (size_t j = 0; j < res[i].size(); j++) { res[i][j]->to_buffer(buffer_addr + index, need_feature); index += res[i][j]->get_size(need_feature); } } actual_size = size; return 0; } int32_t GraphTable::get_server_index_by_id(int64_t id) { return id % shard_num / shard_num_per_server; } int32_t GraphTable::Initialize(const TableParameter &config, const FsClientParameter &fs_config) { LOG(INFO) << "in graphTable initialize"; _config = config; if (InitializeAccessor() != 0) { LOG(WARNING) << "Table accessor initialize failed"; return -1; } if (_afs_client.initialize(fs_config) != 0) { LOG(WARNING) << "Table fs_client initialize failed"; // return -1; } auto graph = config.graph_parameter(); shard_num = _config.shard_num(); LOG(INFO) << "in graphTable initialize over"; return Initialize(graph); } int32_t GraphTable::Initialize(const GraphParameter &graph) { task_pool_size_ = graph.task_pool_size(); #ifdef PADDLE_WITH_HETERPS _db = NULL; search_level = graph.search_level(); if (search_level >= 2) { _db = paddle::distributed::RocksDBHandler::GetInstance(); _db->initialize("./temp_gpups_db", task_pool_size_); } // gpups_mode = true; // auto *sampler = // CREATE_PSCORE_CLASS(GraphSampler, graph.gpups_graph_sample_class()); // auto slices = // string::split_string(graph.gpups_graph_sample_args(), ","); // std::cout << "slices" << std::endl; // for (auto x : slices) std::cout << x << std::endl; // sampler->init(graph.gpu_num(), this, slices); // graph_sampler.reset(sampler); #endif if (shard_num == 0) { server_num = 1; _shard_idx = 0; shard_num = graph.shard_num(); } use_cache = graph.use_cache(); if (use_cache) { cache_size_limit = graph.cache_size_limit(); cache_ttl = graph.cache_ttl(); make_neighbor_sample_cache((size_t)cache_size_limit, (size_t)cache_ttl); } _shards_task_pool.resize(task_pool_size_); for (size_t i = 0; i < _shards_task_pool.size(); ++i) { _shards_task_pool[i].reset(new ::ThreadPool(1)); _shards_task_rng_pool.push_back(paddle::framework::GetCPURandomEngine(0)); } auto graph_feature = graph.graph_feature(); // this->table_name = common.table_name(); // this->table_type = common.name(); this->table_name = graph.table_name(); this->table_type = graph.table_type(); VLOG(0) << " init graph table type " << this->table_type << " table name " << this->table_name; // int feat_conf_size = static_cast(common.attributes().size()); int feat_conf_size = static_cast(graph_feature.name().size()); for (int i = 0; i < feat_conf_size; i++) { // auto &f_name = common.attributes()[i]; // auto &f_shape = common.dims()[i]; // auto &f_dtype = common.params()[i]; auto &f_name = graph_feature.name()[i]; auto &f_shape = graph_feature.shape()[i]; auto &f_dtype = graph_feature.dtype()[i]; this->feat_name.push_back(f_name); this->feat_shape.push_back(f_shape); this->feat_dtype.push_back(f_dtype); this->feat_id_map[f_name] = i; VLOG(0) << "init graph table feat conf name:" << f_name << " shape:" << f_shape << " dtype:" << f_dtype; } VLOG(0) << "in init graph table shard num = " << shard_num << " shard_idx" << _shard_idx; shard_num_per_server = sparse_local_shard_num(shard_num, server_num); shard_start = _shard_idx * shard_num_per_server; shard_end = shard_start + shard_num_per_server; VLOG(0) << "in init graph table shard idx = " << _shard_idx << " shard_start " << shard_start << " shard_end " << shard_end; for (size_t i = 0; i < shard_num_per_server; i++) { shards.push_back(new GraphShard()); } use_duplicate_nodes = false; for (int i = 0; i < task_pool_size_; i++) { extra_shards.push_back(new GraphShard()); } return 0; } } // namespace distributed }; // namespace paddle