// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/fetch_async_op_handle.h" #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler/event_tracing.h" namespace paddle { namespace framework { namespace details { FetchAsyncOpHandle::FetchAsyncOpHandle(ir::Node *node, FetchResultType *data, size_t offset, std::vector *local_scopes, std::vector *local_exec_scopes, bool return_merged) : OpHandleBase(node), data_(data), offset_(offset), local_scopes_(local_scopes), local_exec_scopes_(local_exec_scopes), return_merged_(return_merged) {} FetchAsyncOpHandle::~FetchAsyncOpHandle() {} void FetchAsyncOpHandle::RecordWaitEventOnCtx( platform::DeviceContext *waited_ctx) { PADDLE_THROW(platform::errors::PermissionDenied( "No nodes need to wait FetchAsyncOp. Unexpceted Error.")); } static void CheckTensorAttrs(const LoDTensor *tensor, const proto::VarType::Type &type, const DataLayout &layout, const DDim &dims, const LoD &lod, const size_t offset) { if (tensor->numel() && tensor->IsInitialized()) { // step1: check type PADDLE_ENFORCE_EQ( type, framework::TransToProtoVarType(tensor->dtype()), platform::errors::InvalidArgument( "The data type of fetched Tensors or the items of fetched " "LoDTensorArray are different from each other on different " "devices(%s vs %s). And the error is caused by the %zu " "(th) fetched variable. Please set the " "parameter `return_merged = False` when you " "call the `Executor.run()` method.", DataTypeToString(type), tensor->dtype(), offset)); // step2: check layout PADDLE_ENFORCE_EQ( layout, tensor->layout(), platform::errors::InvalidArgument( "The layout of fetched Tensors or the items of fetched " "LoDTensorArray are different from each other on different " "devices(%s vs %s). And the error is caused by the %zu " "(th) fetched variable. Please set the " "parameter `return_merged = False` when you " "call the `Executor.run()` method.", DataLayoutToString(layout), DataLayoutToString(tensor->layout()), offset)); } // step3: check dims auto tensor_dims = tensor->dims(); PADDLE_ENFORCE_EQ(dims.size(), tensor_dims.size(), platform::errors::InvalidArgument( "The dimension sizes of fetched Tensors or " "the items of fetched LoDTensorArray are " "different from each other on different " "devices(%s vs %s). And the error is caused by the %zu " "(th) fetched variable. Please set the " "parameter `return_merged = False` when you " "call the `Executor.run()` method.", dims, tensor_dims, offset)); for (int j = 1; j < dims.size(); j++) { PADDLE_ENFORCE_EQ(dims[j], tensor_dims[j], platform::errors::InvalidArgument( "The dimensions of fetched Tensors or " "the items of fetched LoDTensorArray are " "different from each other on different " "devices(%s vs %s). And the error is caused by the " "%zu (th) fetched variable. Please set the " "parameter `return_merged = False` when " "you call the `Executor.run()` method.", dims, tensor_dims, offset)); } // step4: check lod PADDLE_ENFORCE_EQ( lod.size(), tensor->lod().size(), platform::errors::InvalidArgument( "The LoD information of fetched Tensors or the items of fetched " "LoDTensorArray are different from each other on different " "devices(%s vs %s). And the error is caused by the %zu " "(th) fetched variable. Please set the " "parameter `return_merged = False` when you " "call the `Executor.run()` method.", lod, tensor->lod(), offset)); } static void TransData(const framework::Tensor *src_item, framework::Tensor *dst_item, const platform::DeviceContext &ctx) { if (src_item->IsInitialized() && src_item->numel() > 0) { if (platform::is_gpu_place(src_item->place())) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) TensorCopy(*src_item, platform::CUDAPinnedPlace(), ctx, dst_item); #endif } else { TensorCopy(*src_item, platform::CPUPlace(), dst_item); } } } void FetchAsyncOpHandle::FetchMergedLodTensor( const std::vector &src_lodtensors, LoDTensor *dst_lodtensor) { // calc dst type,layout,dim,lod and calc check dim proto::VarType::Type new_type = proto::VarType::FP32; framework::DataLayout new_layout; framework::DDim new_dim; LoD new_lod = src_lodtensors[0]->lod(); framework::DDim check_dim; for (auto *t : src_lodtensors) { if (t->numel() && t->IsInitialized()) { check_dim = t->dims(); new_type = paddle::framework::TransToProtoVarType(t->dtype()); new_layout = t->layout(); break; } } bool find_first_dims = false; for (auto *t : src_lodtensors) { if (t->numel() && t->IsInitialized()) { if (!find_first_dims) { new_dim = t->dims(); find_first_dims = true; } else { new_dim[0] += t->dims()[0]; } } } // check src type,layout,dim,lod consistence for (size_t i = 1; i < src_lodtensors.size(); ++i) { CheckTensorAttrs(src_lodtensors[i], new_type, new_layout, check_dim, new_lod, offset_); } // set dst tensor dst_lodtensor->Resize(new_dim); dst_lodtensor->set_layout(src_lodtensors[0]->layout()); dst_lodtensor->set_lod(src_lodtensors[0]->lod()); if (platform::is_gpu_place(src_lodtensors[0]->place())) { dst_lodtensor->mutable_data(platform::CUDAPinnedPlace(), src_lodtensors[0]->dtype()); } else { dst_lodtensor->mutable_data(platform::CPUPlace(), src_lodtensors[0]->dtype()); } // slice and memcpy int begin = 0; for (auto *src : src_lodtensors) { int end = begin + src->dims()[0]; if (end == begin) { continue; } auto dst = dst_lodtensor->Slice(begin, end); TransData(src, &dst, *dev_ctxes_[src->place()]); begin = end; } } void FetchAsyncOpHandle::RunImpl() { platform::RecordEvent record_event(Name(), platform::TracerEventType::Operator, 1); WaitInputVarGenerated(true); // get src vars auto &scopes = *local_exec_scopes_; std::vector src_vars; src_vars.reserve(inputs_.size()); for (size_t i = 0; i < inputs_.size(); ++i) { auto *var_handle = static_cast(inputs_[i]); auto &scope = scopes.at(var_handle->scope_idx()); auto *var = scope->FindVar(var_handle->name()); PADDLE_ENFORCE_NOT_NULL( var, platform::errors::NotFound( "Cannot find variable %s in execution scope.", var_handle->name())); src_vars.emplace_back(var); } if (return_merged_) { auto &val = BOOST_GET(FetchList, *data_); if (src_vars[0]->IsType()) { // to lodtensor type std::vector src_lodtensors; src_lodtensors.reserve(src_vars.size()); for (size_t i = 0; i < src_vars.size(); ++i) { src_lodtensors.emplace_back(&src_vars[i]->Get()); } LoDTensor dst_lodtensor; FetchMergedLodTensor(src_lodtensors, &dst_lodtensor); val.at(offset_) = std::move(dst_lodtensor); } else { // to lodtensorarray type std::vector src_lodtensor_arrays; src_lodtensor_arrays.reserve(src_vars.size()); for (size_t i = 0; i < src_vars.size(); ++i) { src_lodtensor_arrays.emplace_back( &src_vars[i]->Get()); } LoDTensorArray dst_lodtensor_array; dst_lodtensor_array.resize(src_lodtensor_arrays[0]->size()); for (size_t i = 0; i < dst_lodtensor_array.size(); ++i) { std::vector src_lodtensors; src_lodtensors.reserve(src_lodtensor_arrays.size()); for (size_t j = 0; j < src_lodtensor_arrays.size(); ++j) { src_lodtensors.emplace_back(&(*src_lodtensor_arrays[j])[i]); } FetchMergedLodTensor(src_lodtensors, &dst_lodtensor_array[i]); } val.at(offset_) = std::move(dst_lodtensor_array); } } else { auto &val = BOOST_GET(FetchUnmergedList, *data_); auto &dst_tensors = val.at(offset_); dst_tensors.reserve(src_vars.size()); for (size_t i = 0; i < src_vars.size(); ++i) { if (src_vars[i]->IsType()) { auto &t = src_vars[i]->Get(); LoDTensor item; TransData(&t, &item, *dev_ctxes_[t.place()]); dst_tensors.emplace_back(std::move(item)); } else { auto &t = src_vars[i]->Get(); LoDTensorArray item; item.resize(t.size()); for (size_t j = 0; j < t.size(); ++j) { TransData(&t[j], &item[j], *dev_ctxes_[t[j].place()]); } dst_tensors.emplace_back(std::move(item)); } } } } bool FetchAsyncOpHandle::IsMultiDeviceTransfer() { return true; } std::string FetchAsyncOpHandle::Name() const { return "FetchAsync"; } } // namespace details } // namespace framework } // namespace paddle