/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/float16.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" namespace py = pybind11; namespace paddle { namespace pybind { template T TensorGetElement(const framework::Tensor &self, size_t offset) { PADDLE_ENFORCE_LT(offset, self.numel()); T b = static_cast(0); if (platform::is_cpu_place(self.place())) { b = self.data()[offset]; #ifdef PADDLE_WITH_CUDA } else { const T *a = self.data(); auto p = boost::get(self.place()); paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr); #endif } return b; } template void TensorSetElement(framework::Tensor *self, size_t offset, T elem) { PADDLE_ENFORCE_LT(offset, self->numel()); if (platform::is_cpu_place(self->place())) { self->mutable_data(self->place())[offset] = elem; #ifdef PADDLE_WITH_CUDA } else { auto p = boost::get(self->place()); T *a = self->mutable_data(p); paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr); #endif } } template void PyCPUTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CPUPlace place) { std::vector dims; dims.reserve(array.ndim()); for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(T) * array.size()); } template <> // This following specialization maps uint16_t in the parameter type to // platform::float16. inline void PyCPUTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CPUPlace place) { std::vector dims; dims.reserve(array.ndim()); for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size()); } template void _sliceCompute(const framework::Tensor *in, framework::Tensor *out, const platform::CPUDeviceContext &ctx, const std::vector &axes, const std::vector &starts) { auto &eigen_place = *ctx.eigen_device(); auto place = in->place(); auto out_dims = out->dims(); auto in_dims = in->dims(); auto offsets = Eigen::array(); auto extents = Eigen::array(); for (size_t i = 0; i < D; ++i) { offsets[i] = 0; extents[i] = out_dims[i]; } int start; for (size_t i = 0; i < axes.size(); ++i) { start = starts[i]; if (start < 0) { start = (start + in_dims[axes[i]]); } start = std::max(start, 0); offsets[axes[i]] = start; } auto in_t = framework::EigenTensor::From( *in); auto out_t = framework::EigenTensor::From( *out); out_t.device(eigen_place) = in_t.slice(offsets, extents); } template void _concatCompute(const std::vector &ins, paddle::framework::Tensor *out, const platform::CPUDeviceContext &ctx, int64_t axis) { if (axis == 0 && ins.size() < 10) { size_t output_offset = 0; for (auto &in : ins) { auto in_stride = framework::stride_numel(in.dims()); auto out_stride = framework::stride_numel(out->dims()); paddle::operators::StridedNumelCopyWithAxis( ctx, axis, out->data() + output_offset, out_stride, in.data(), in_stride, in_stride[axis]); output_offset += in_stride[axis]; } } else { paddle::operators::math::ConcatFunctor concat_functor; concat_functor(ctx, ins, static_cast(axis), out); } } void _getSliceinfo(const framework::Tensor &self, py::object obj, const int64_t dim, int64_t *pstart, int64_t *pstop, int64_t *pstep, int64_t *pslicelength) { auto &start = *pstart; auto &stop = *pstop; auto &step = *pstep; auto &slicelength = *pslicelength; const framework::DDim &srcDDim = self.dims(); if (dim < 0 || dim >= srcDDim.size()) { throw py::index_error(); } if (py::isinstance(obj)) { size_t lstart, lstop, lstep, lslicelength; py::slice s = static_cast(obj); if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) { throw py::index_error(); } start = static_cast(lstart); stop = static_cast(lstop); step = static_cast(lstep); slicelength = static_cast(lslicelength); } else if (py::isinstance(obj)) { start = static_cast(static_cast(obj)); if (std::abs(start) >= srcDDim[dim]) { throw py::index_error(); } start = (start >= 0) ? start : srcDDim[dim] - start; stop = start + 1; step = 1; slicelength = 1; } else { throw py::index_error(); } } inline framework::Tensor *_getTensor(const framework::Tensor &self, const framework::DDim &ddim) { framework::Tensor *output = new framework::Tensor(); output->Resize(ddim); auto place = self.place(); if (platform::is_cpu_place(place)) { output->mutable_data(boost::get(place), self.type()); #ifdef PADDLE_WITH_CUDA } else { if (platform::is_cuda_pinned_place(place)) { output->mutable_data(boost::get(place), self.type()); } else if ((platform::is_gpu_place(place))) { output->mutable_data(boost::get(place), self.type()); } #endif } return output; } template void _sliceDapper(const framework::Tensor *in, framework::Tensor *out, const platform::CPUDeviceContext &ctx, const std::vector &axes, const std::vector &starts, int size) { switch (size) { case 1: _sliceCompute(in, out, ctx, axes, starts); break; case 2: _sliceCompute(in, out, ctx, axes, starts); break; case 3: _sliceCompute(in, out, ctx, axes, starts); break; case 4: _sliceCompute(in, out, ctx, axes, starts); break; case 5: _sliceCompute(in, out, ctx, axes, starts); break; case 6: _sliceCompute(in, out, ctx, axes, starts); break; case 7: _sliceCompute(in, out, ctx, axes, starts); break; case 8: _sliceCompute(in, out, ctx, axes, starts); break; case 9: _sliceCompute(in, out, ctx, axes, starts); break; default: PADDLE_THROW("dim size not exepected, current is %d", size); break; } } template inline framework::Tensor *_sliceWrapper(const framework::Tensor &self, const platform::CPUDeviceContext &ctx, py::object obj, int dim, int64_t start, int64_t slicelength) { framework::DDim dstDDim = self.dims(); dstDDim[dim] = static_cast(slicelength); std::vector axes({dim}); std::vector starts({static_cast(start)}); framework::Tensor *output = _getTensor(self, dstDDim); _sliceDapper(&self, output, ctx, axes, starts, dstDDim.size()); return output; } template inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self, py::object obj, int dim) { platform::CPUDeviceContext ctx; int64_t start, stop, step, slicelength; _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength); if (step == 1 || slicelength == 1) { return _sliceWrapper(self, ctx, obj, dim, start, slicelength); } else { std::vector ins; for (auto i = 0; i < slicelength; ++i, start += step) { ins.emplace_back(*_sliceWrapper(self, ctx, obj, dim, start, 1)); } // do the concat operation framework::DDim dstDDim = self.dims(); dstDDim[dim] = static_cast(slicelength); framework::Tensor *output1 = _getTensor(self, dstDDim); _concatCompute(ins, output1, ctx, dim); return output1; } } inline framework::Tensor *_sliceTensor(const framework::Tensor &self, py::object obj, int dim) { auto src_type = self.type(); switch (src_type) { case framework::proto::VarType::FP16: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::FP32: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::FP64: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::INT32: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::INT64: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::BOOL: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::INT16: return _sliceAndConcat(self, obj, dim); case framework::proto::VarType::UINT8: return _sliceAndConcat(self, obj, dim); default: PADDLE_THROW("Not support type %d", src_type); } } inline framework::Tensor *_pySliceTensor(const framework::Tensor &self, py::object obj) { if (py::isinstance(obj)) { py::list l = static_cast(obj); std::unique_ptr target; framework::Tensor *src = const_cast(&self); for (auto i = 0; i < static_cast(l.size()); ++i) { src = _sliceTensor(*src, l[i], i); if (i + 1 == static_cast(l.size())) { return src; } else { target.reset(src); } } return nullptr; } else { return _sliceTensor(self, obj, 0); } } inline framework::Tensor *PySliceTensor(const framework::Tensor &self, py::object obj) { if (platform::is_gpu_place(self.place())) { std::unique_ptr holder; framework::Tensor src; framework::TensorCopySync(self, platform::CPUPlace(), &src); framework::Tensor *output = _pySliceTensor(src, obj); holder.reset(output); framework::Tensor *dst = _getTensor(*output, output->dims()); framework::TensorCopySync(*output, self.place(), dst); return dst; } else { return _pySliceTensor(self, obj); } } #ifdef PADDLE_WITH_CUDA template void PyCUDATensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CUDAPlace place) { std::vector dims; dims.reserve(array.ndim()); for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); } template <> // This following specialization maps uint16_t in the parameter type to // platform::float16. inline void PyCUDATensorSetFromArray( framework::Tensor *self, pybind11::array_t array, paddle::platform::CUDAPlace place) { std::vector dims; dims.reserve(array.ndim()); for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(uint16_t) * array.size(), cudaMemcpyHostToDevice); } template void PyCUDAPinnedTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, const paddle::platform::CUDAPinnedPlace &place) { std::vector dims; dims.reserve(array.ndim()); for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(T) * array.size()); } template <> // This following specialization maps uint16_t in the parameter type to // platform::float16. inline void PyCUDAPinnedTensorSetFromArray( framework::Tensor *self, pybind11::array_t array, const paddle::platform::CUDAPinnedPlace &place) { std::vector dims; dims.reserve(array.ndim()); for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) { dims.push_back(static_cast(array.shape()[i])); } self->Resize(framework::make_ddim(dims)); auto *dst = self->mutable_data(place); std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size()); } #endif namespace details { template constexpr bool IsValidDTypeToPyArray() { return false; } #define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \ template <> \ constexpr bool IsValidDTypeToPyArray() { \ return true; \ } DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16); DECLARE_VALID_DTYPE_TO_PY_ARRAY(float); DECLARE_VALID_DTYPE_TO_PY_ARRAY(double); DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool); DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t); DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t); DECLARE_VALID_DTYPE_TO_PY_ARRAY(int); DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t); inline std::string TensorDTypeToPyDTypeStr( framework::proto::VarType::Type type) { #define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type) \ if (type == proto_type) { \ if (std::is_same::value) { \ return "e"; \ } else { \ PADDLE_ENFORCE(IsValidDTypeToPyArray, \ "This type of tensor cannot be expose to Python"); \ return py::format_descriptor::format(); \ } \ } _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE); #undef TENSOR_DTYPE_TO_PY_DTYPE PADDLE_THROW("Unsupported data type %d", static_cast(type)); } } // namespace details inline py::array TensorToPyArray(const framework::Tensor &tensor) { bool is_gpu_tensor = platform::is_gpu_place(tensor.place()); const auto &tensor_dims = tensor.dims(); auto tensor_dtype = tensor.type(); size_t sizeof_dtype = framework::SizeOfType(tensor_dtype); std::vector py_dims(tensor_dims.size()); std::vector py_strides(tensor_dims.size()); size_t numel = 1; for (int i = tensor_dims.size() - 1; i >= 0; --i) { py_dims[i] = (size_t)tensor_dims[i]; py_strides[i] = sizeof_dtype * numel; numel *= py_dims[i]; } const void *tensor_buf_ptr = tensor.data(); std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(tensor.type()); if (!is_gpu_tensor) { return py::array(py::buffer_info( const_cast(tensor_buf_ptr), sizeof_dtype, py_dtype_str, static_cast(tensor.dims().size()), py_dims, py_strides)); } #ifdef PADDLE_WITH_CUDA py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides); PADDLE_ENFORCE(py_arr.writeable() && py_arr.owndata(), "PyArray must be writable and own data, otherwise memory leak " "or double free would occur"); size_t copy_bytes = sizeof_dtype * numel; paddle::platform::GpuMemcpySync(py_arr.mutable_data(), tensor_buf_ptr, copy_bytes, cudaMemcpyDeviceToHost); return py_arr; #else PADDLE_THROW("CUDAPlace is not supported when not compiled with CUDA"); #endif } } // namespace pybind } // namespace paddle