// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/pybind/inference_api.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "paddle/fluid/inference/api/analysis_predictor.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_infer_contrib.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_pass_builder.h" #include "paddle/fluid/inference/utils/io_utils.h" namespace py = pybind11; namespace pybind11 { namespace detail { // Note: use same enum number of float16 in numpy. // import numpy as np // print np.dtype(np.float16).num # 23 constexpr int NPY_FLOAT16_ = 23; constexpr int NPY_UINT16_ = 4; // Note: Since float16 is not a builtin type in C++, we register // paddle::platform::float16 as numpy.float16. // Ref: https://github.com/pybind/pybind11/issues/1776 template <> struct npy_format_descriptor { static py::dtype dtype() { handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_); return reinterpret_borrow(ptr); } static std::string format() { // Note: "e" represents float16. // Details at: // https://docs.python.org/3/library/struct.html#format-characters. return "e"; } static constexpr auto name = _("float16"); }; } // namespace detail } // namespace pybind11 namespace paddle { namespace pybind { using paddle::AnalysisPredictor; using paddle::NativeConfig; using paddle::NativePaddlePredictor; using paddle::PaddleBuf; using paddle::PaddleDType; using paddle::PaddlePassBuilder; using paddle::PaddlePlace; using paddle::PaddlePredictor; using paddle::PaddleTensor; using paddle::PassStrategy; using paddle::ZeroCopyTensor; namespace { void BindPaddleDType(py::module *m); void BindPaddleBuf(py::module *m); void BindPaddleTensor(py::module *m); void BindPaddlePlace(py::module *m); void BindPaddlePredictor(py::module *m); void BindNativeConfig(py::module *m); void BindNativePredictor(py::module *m); void BindLiteNNAdapterConfig(py::module *m); void BindAnalysisConfig(py::module *m); void BindAnalysisPredictor(py::module *m); void BindZeroCopyTensor(py::module *m); void BindPaddlePassBuilder(py::module *m); void BindPaddleInferPredictor(py::module *m); void BindPaddleInferTensor(py::module *m); void BindPredictorPool(py::module *m); #ifdef PADDLE_WITH_MKLDNN void BindMkldnnQuantizerConfig(py::module *m); #endif template PaddleBuf PaddleBufCreate( py::array_t data) { PaddleBuf buf(data.size() * sizeof(T)); std::copy_n(static_cast(data.data()), data.size(), static_cast(buf.data())); return buf; } template void PaddleBufReset( PaddleBuf &buf, // NOLINT py::array_t data) { // NOLINT buf.Resize(data.size() * sizeof(T)); std::copy_n(static_cast(data.data()), data.size(), static_cast(buf.data())); } template PaddleTensor PaddleTensorCreate( py::array_t data, const std::string name = "", const std::vector> &lod = {}, bool copy = true) { PaddleTensor tensor; if (copy) { PaddleBuf buf(data.size() * sizeof(T)); std::copy_n(static_cast(data.data()), data.size(), static_cast(buf.data())); tensor.data = std::move(buf); } else { tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T)); } tensor.dtype = inference::PaddleTensorGetDType(); tensor.name = name; tensor.lod = lod; tensor.shape.resize(data.ndim()); std::copy_n(data.shape(), data.ndim(), tensor.shape.begin()); return tensor; } py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) { py::dtype dt; switch (dtype) { case PaddleDType::INT32: dt = py::dtype::of(); break; case PaddleDType::INT64: dt = py::dtype::of(); break; case PaddleDType::FLOAT32: dt = py::dtype::of(); break; case PaddleDType::UINT8: dt = py::dtype::of(); break; case PaddleDType::FLOAT16: dt = py::dtype::of(); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported data type. Now only supports INT32, INT64, UINT8 and " "FLOAT32.")); } return dt; } py::array PaddleTensorGetData(PaddleTensor &tensor) { // NOLINT py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype); return py::array(std::move(dt), {tensor.shape}, tensor.data.data()); } template void ZeroCopyTensorCreate( ZeroCopyTensor &tensor, // NOLINT py::array_t data) { std::vector shape; std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape)); tensor.Reshape(std::move(shape)); tensor.copy_from_cpu(static_cast(data.data())); } /// \brief Experimental interface. /// Create the Strings tensor from data. /// \param tensor The tensor will be created and /// the tensor value is same as data. /// \param data The input text. void ZeroCopyStringTensorCreate(ZeroCopyTensor &tensor, // NOLINT const paddle_infer::Strings *data) { size_t shape = data->size(); tensor.ReshapeStrings(shape); tensor.copy_strings_from_cpu(data); } template void PaddleInferTensorCreate( paddle_infer::Tensor &tensor, // NOLINT py::array_t data) { std::vector shape; std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape)); tensor.Reshape(std::move(shape)); tensor.CopyFromCpu(static_cast(data.data())); } /// \brief Experimental interface. /// Create the Strings tensor from data. /// \param tensor The tensor will be created and /// the tensor value is same as data. /// \param data The input text. void PaddleInferStringTensorCreate(paddle_infer::Tensor &tensor, // NOLINT const paddle_infer::Strings *data) { VLOG(3) << "Create PaddleInferTensor, dtype = Strings "; size_t shape = data->size(); tensor.ReshapeStrings(shape); tensor.CopyStringsFromCpu(data); } size_t PaddleGetDTypeSize(PaddleDType dt) { size_t size{0}; switch (dt) { case PaddleDType::INT32: size = sizeof(int32_t); break; case PaddleDType::INT64: size = sizeof(int64_t); break; case PaddleDType::FLOAT32: size = sizeof(float); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported data type. Now only supports INT32, INT64 and " "FLOAT32.")); } return size; } py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) { // NOLINT py::dtype dt = PaddleDTypeToNumpyDType(tensor.type()); auto tensor_shape = tensor.shape(); py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end()); py::array array(dt, std::move(shape)); switch (tensor.type()) { case PaddleDType::INT32: tensor.copy_to_cpu(static_cast(array.mutable_data())); break; case PaddleDType::INT64: tensor.copy_to_cpu(static_cast(array.mutable_data())); break; case PaddleDType::FLOAT32: tensor.copy_to_cpu(static_cast(array.mutable_data())); break; case PaddleDType::FLOAT16: tensor.copy_to_cpu( static_cast(array.mutable_data())); break; case PaddleDType::UINT8: tensor.copy_to_cpu(static_cast(array.mutable_data())); break; case PaddleDType::INT8: tensor.copy_to_cpu(static_cast(array.mutable_data())); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported data type. Now only supports INT32, INT64, UINT8 and " "FLOAT32.")); } return array; } py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) { // NOLINT py::dtype dt = PaddleDTypeToNumpyDType(tensor.type()); auto tensor_shape = tensor.shape(); py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end()); py::array array(dt, std::move(shape)); switch (tensor.type()) { case PaddleDType::INT32: tensor.CopyToCpu(static_cast(array.mutable_data())); break; case PaddleDType::INT64: tensor.CopyToCpu(static_cast(array.mutable_data())); break; case PaddleDType::FLOAT32: tensor.CopyToCpu(static_cast(array.mutable_data())); break; case PaddleDType::FLOAT16: tensor.CopyToCpu( static_cast(array.mutable_data())); break; case PaddleDType::UINT8: tensor.CopyToCpu(static_cast(array.mutable_data())); break; case PaddleDType::INT8: tensor.CopyToCpu(static_cast(array.mutable_data())); break; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported data type. Now only supports INT32, INT64 and " "FLOAT32.")); } return array; } py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) { // NOLINT std::stringstream ss; paddle::inference::SerializePDTensorToStream(&ss, tensor); return static_cast(ss.str()); } void CopyPaddleInferTensor(paddle_infer::Tensor &dst, // NOLINT const paddle_infer::Tensor &src) { return paddle_infer::contrib::TensorUtils::CopyTensor(&dst, src); } } // namespace void BindInferenceApi(py::module *m) { BindPaddleDType(m); BindPaddleBuf(m); BindPaddleTensor(m); BindPaddlePlace(m); BindPaddlePredictor(m); BindNativeConfig(m); BindNativePredictor(m); BindLiteNNAdapterConfig(m); BindAnalysisConfig(m); BindAnalysisPredictor(m); BindPaddleInferPredictor(m); BindZeroCopyTensor(m); BindPaddleInferTensor(m); BindPaddlePassBuilder(m); BindPredictorPool(m); #ifdef PADDLE_WITH_MKLDNN BindMkldnnQuantizerConfig(m); #endif m->def("create_paddle_predictor", &paddle::CreatePaddlePredictor, py::arg("config")); m->def("create_paddle_predictor", &paddle::CreatePaddlePredictor, py::arg("config")); m->def("create_predictor", [](const paddle_infer::Config &config) -> std::unique_ptr { auto pred = std::unique_ptr( new paddle_infer::Predictor(config)); return std::move(pred); }); m->def("copy_tensor", &CopyPaddleInferTensor); m->def("paddle_dtype_size", &paddle::PaddleDtypeSize); m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes); m->def("get_version", &paddle_infer::GetVersion); m->def("get_trt_compile_version", &paddle_infer::GetTrtCompileVersion); m->def("get_trt_runtime_version", &paddle_infer::GetTrtRuntimeVersion); m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType); } namespace { void BindPaddleDType(py::module *m) { py::enum_(*m, "PaddleDType") .value("FLOAT32", PaddleDType::FLOAT32) .value("INT64", PaddleDType::INT64) .value("INT32", PaddleDType::INT32); } void BindPaddleBuf(py::module *m) { py::class_(*m, "PaddleBuf") .def(py::init()) .def(py::init([](std::vector &data) { auto buf = PaddleBuf(data.size() * sizeof(float)); std::memcpy(buf.data(), static_cast(data.data()), buf.length()); return buf; })) .def(py::init(&PaddleBufCreate)) .def(py::init(&PaddleBufCreate)) .def(py::init(&PaddleBufCreate)) .def("resize", &PaddleBuf::Resize) .def("reset", [](PaddleBuf &self, std::vector &data) { self.Resize(data.size() * sizeof(float)); std::memcpy(self.data(), data.data(), self.length()); }) .def("reset", &PaddleBufReset) .def("reset", &PaddleBufReset) .def("reset", &PaddleBufReset) .def("empty", &PaddleBuf::empty) .def("tolist", [](PaddleBuf &self, const std::string &dtype) -> py::list { py::list l; if (dtype == "int32") { auto *data = static_cast(self.data()); auto size = self.length() / sizeof(int32_t); l = py::cast(std::vector(data, data + size)); } else if (dtype == "int64") { auto *data = static_cast(self.data()); auto size = self.length() / sizeof(int64_t); l = py::cast(std::vector(data, data + size)); } else if (dtype == "float32") { auto *data = static_cast(self.data()); auto size = self.length() / sizeof(float); l = py::cast(std::vector(data, data + size)); } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported data type. Now only supports INT32, INT64 and " "FLOAT32.")); } return l; }) .def("float_data", [](PaddleBuf &self) -> std::vector { auto *data = static_cast(self.data()); return {data, data + self.length() / sizeof(*data)}; }) .def("int64_data", [](PaddleBuf &self) -> std::vector { int64_t *data = static_cast(self.data()); return {data, data + self.length() / sizeof(*data)}; }) .def("int32_data", [](PaddleBuf &self) -> std::vector { int32_t *data = static_cast(self.data()); return {data, data + self.length() / sizeof(*data)}; }) .def("length", &PaddleBuf::length); } void BindPaddleTensor(py::module *m) { py::class_(*m, "PaddleTensor") .def(py::init<>()) .def(py::init(&PaddleTensorCreate), py::arg("data"), py::arg("name") = "", py::arg("lod") = std::vector>(), py::arg("copy") = true) .def(py::init(&PaddleTensorCreate), py::arg("data"), py::arg("name") = "", py::arg("lod") = std::vector>(), py::arg("copy") = true) .def(py::init(&PaddleTensorCreate), py::arg("data"), py::arg("name") = "", py::arg("lod") = std::vector>(), py::arg("copy") = true) .def("as_ndarray", &PaddleTensorGetData) .def_readwrite("name", &PaddleTensor::name) .def_readwrite("shape", &PaddleTensor::shape) .def_readwrite("data", &PaddleTensor::data) .def_readwrite("dtype", &PaddleTensor::dtype) .def_readwrite("lod", &PaddleTensor::lod); } void BindPaddlePlace(py::module *m) { py::enum_(*m, "PaddlePlace") .value("UNK", PaddlePlace::kUNK) .value("CPU", PaddlePlace::kCPU) .value("GPU", PaddlePlace::kGPU) .value("XPU", PaddlePlace::kXPU) .value("NPU", PaddlePlace::kNPU); } void BindPaddlePredictor(py::module *m) { auto paddle_predictor = py::class_(*m, "PaddlePredictor"); paddle_predictor .def("run", [](PaddlePredictor &self, const std::vector &inputs) { std::vector outputs; self.Run(inputs, &outputs); return outputs; }) .def("get_input_tensor", &PaddlePredictor::GetInputTensor) .def("get_output_tensor", &PaddlePredictor::GetOutputTensor) .def("get_input_names", &PaddlePredictor::GetInputNames) .def("get_output_names", &PaddlePredictor::GetOutputNames) .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun) .def("clone", &PaddlePredictor::Clone) .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram); auto config = py::class_(paddle_predictor, "Config"); config.def(py::init<>()) .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir); } void BindNativeConfig(py::module *m) { py::class_(*m, "NativeConfig") .def(py::init<>()) .def_readwrite("use_gpu", &NativeConfig::use_gpu) .def_readwrite("use_xpu", &NativeConfig::use_xpu) .def_readwrite("use_npu", &NativeConfig::use_npu) .def_readwrite("device", &NativeConfig::device) .def_readwrite("fraction_of_gpu_memory", &NativeConfig::fraction_of_gpu_memory) .def_readwrite("prog_file", &NativeConfig::prog_file) .def_readwrite("param_file", &NativeConfig::param_file) .def_readwrite("specify_input_name", &NativeConfig::specify_input_name) .def("set_cpu_math_library_num_threads", &NativeConfig::SetCpuMathLibraryNumThreads) .def("cpu_math_library_num_threads", &NativeConfig::cpu_math_library_num_threads); } void BindNativePredictor(py::module *m) { py::class_(*m, "NativePaddlePredictor") .def(py::init()) .def("init", &NativePaddlePredictor::Init) .def("run", [](NativePaddlePredictor &self, const std::vector &inputs) { std::vector outputs; self.Run(inputs, &outputs); return outputs; }) .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor) .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor) .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun) .def("clone", &NativePaddlePredictor::Clone) .def("scope", &NativePaddlePredictor::scope, py::return_value_policy::reference); } void BindAnalysisConfig(py::module *m) { py::class_ analysis_config(*m, "AnalysisConfig"); py::enum_(analysis_config, "Precision") .value("Float32", AnalysisConfig::Precision::kFloat32) .value("Int8", AnalysisConfig::Precision::kInt8) .value("Half", AnalysisConfig::Precision::kHalf) .export_values(); analysis_config.def(py::init<>()) .def(py::init()) .def(py::init()) .def(py::init()) .def("summary", &AnalysisConfig::Summary) .def("set_model", (void (AnalysisConfig::*)(const std::string &)) & AnalysisConfig::SetModel) .def("set_model", (void (AnalysisConfig::*)(const std::string &, const std::string &)) & AnalysisConfig::SetModel) .def("set_prog_file", &AnalysisConfig::SetProgFile) .def("set_params_file", &AnalysisConfig::SetParamsFile) .def("model_dir", &AnalysisConfig::model_dir) .def("prog_file", &AnalysisConfig::prog_file) .def("params_file", &AnalysisConfig::params_file) .def("enable_use_gpu", &AnalysisConfig::EnableUseGpu, py::arg("memory_pool_init_size_mb"), py::arg("device_id") = 0) .def("enable_xpu", &AnalysisConfig::EnableXpu, py::arg("l3_workspace_size") = 16 * 1024 * 1024, py::arg("locked") = false, py::arg("autotune") = true, py::arg("autotune_file") = "", py::arg("precision") = "int16", py::arg("adaptive_seqlen") = false) .def("set_xpu_device_id", &AnalysisConfig::SetXpuDeviceId, py::arg("device_id") = 0) .def("enable_npu", &AnalysisConfig::EnableNpu, py::arg("device_id") = 0) .def("disable_gpu", &AnalysisConfig::DisableGpu) .def("use_gpu", &AnalysisConfig::use_gpu) .def("use_xpu", &AnalysisConfig::use_xpu) .def("use_npu", &AnalysisConfig::use_npu) .def("gpu_device_id", &AnalysisConfig::gpu_device_id) .def("xpu_device_id", &AnalysisConfig::xpu_device_id) .def("npu_device_id", &AnalysisConfig::npu_device_id) .def("memory_pool_init_size_mb", &AnalysisConfig::memory_pool_init_size_mb) .def("fraction_of_gpu_memory_for_pool", &AnalysisConfig::fraction_of_gpu_memory_for_pool) .def("switch_ir_optim", &AnalysisConfig::SwitchIrOptim, py::arg("x") = true) .def("ir_optim", &AnalysisConfig::ir_optim) .def("enable_memory_optim", &AnalysisConfig::EnableMemoryOptim, py::arg("x") = true) .def("enable_profile", &AnalysisConfig::EnableProfile) .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo) .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled) .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir) .def("switch_use_feed_fetch_ops", &AnalysisConfig::SwitchUseFeedFetchOps, py::arg("x") = true) .def("use_feed_fetch_ops_enabled", &AnalysisConfig::use_feed_fetch_ops_enabled) .def("switch_specify_input_names", &AnalysisConfig::SwitchSpecifyInputNames, py::arg("x") = true) .def("specify_input_name", &AnalysisConfig::specify_input_name) .def("enable_tensorrt_engine", &AnalysisConfig::EnableTensorRtEngine, py::arg("workspace_size") = 1 << 20, py::arg("max_batch_size") = 1, py::arg("min_subgraph_size") = 3, py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32, py::arg("use_static") = false, py::arg("use_calib_mode") = true) .def("tensorrt_precision_mode", &AnalysisConfig::tensorrt_precision_mode) .def("set_trt_dynamic_shape_info", &AnalysisConfig::SetTRTDynamicShapeInfo, py::arg("min_input_shape") = std::map>({}), py::arg("max_input_shape") = std::map>({}), py::arg("optim_input_shape") = std::map>({}), py::arg("disable_trt_plugin_fp16") = false) .def("tensorrt_dynamic_shape_enabled", &AnalysisConfig::tensorrt_dynamic_shape_enabled) .def("enable_tensorrt_oss", &AnalysisConfig::EnableTensorRtOSS) .def("tensorrt_oss_enabled", &AnalysisConfig::tensorrt_oss_enabled) .def("collect_shape_range_info", &AnalysisConfig::CollectShapeRangeInfo) .def("shape_range_info_path", &AnalysisConfig::shape_range_info_path) .def("shape_range_info_collected", &AnalysisConfig::shape_range_info_collected) .def("enable_tuned_tensorrt_dynamic_shape", &AnalysisConfig::EnableTunedTensorRtDynamicShape) .def("tuned_tensorrt_dynamic_shape", &AnalysisConfig::tuned_tensorrt_dynamic_shape) .def("trt_allow_build_at_runtime", &AnalysisConfig::trt_allow_build_at_runtime) .def("exp_disable_tensorrt_ops", &AnalysisConfig::Exp_DisableTensorRtOPs) .def("enable_tensorrt_dla", &AnalysisConfig::EnableTensorRtDLA, py::arg("dla_core") = 0) .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled) .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled) .def("enable_dlnne", &AnalysisConfig::EnableDlnne, py::arg("min_subgraph_size") = 3) .def("enable_lite_engine", &AnalysisConfig::EnableLiteEngine, py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32, py::arg("zero_copy") = false, py::arg("passes_filter") = std::vector(), py::arg("ops_filter") = std::vector()) .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled) .def("switch_ir_debug", &AnalysisConfig::SwitchIrDebug, py::arg("x") = true) .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN) .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled) .def("set_cpu_math_library_num_threads", &AnalysisConfig::SetCpuMathLibraryNumThreads) .def("cpu_math_library_num_threads", &AnalysisConfig::cpu_math_library_num_threads) .def("to_native_config", &AnalysisConfig::ToNativeConfig) .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer) .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16) #ifdef PADDLE_WITH_MKLDNN .def("quantizer_config", &AnalysisConfig::mkldnn_quantizer_config, py::return_value_policy::reference) .def("set_mkldnn_cache_capacity", &AnalysisConfig::SetMkldnnCacheCapacity, py::arg("capacity") = 0) .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op) #endif .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp) .def("set_model_buffer", &AnalysisConfig::SetModelBuffer) .def("model_from_memory", &AnalysisConfig::model_from_memory) .def("delete_pass", [](AnalysisConfig &self, const std::string &pass) { self.pass_builder()->DeletePass(pass); }) .def("pass_builder", [](AnalysisConfig &self) { return dynamic_cast(self.pass_builder()); }, py::return_value_policy::reference) .def("nnadapter", &AnalysisConfig::NNAdapter); } void BindLiteNNAdapterConfig(py::module *m) { py::class_ lite_nnadapter_config(*m, "LiteNNAdapterConfig"); lite_nnadapter_config .def("set_device_names", &LiteNNAdapterConfig::SetDeviceNames) .def("set_context_properties", &LiteNNAdapterConfig::SetContextProperties) .def("set_model_cache_dir", &LiteNNAdapterConfig::SetModelCacheDir) .def("set_model_cache_buffers", &LiteNNAdapterConfig::SetModelCacheBuffers) .def("set_subgraph_partition_config_path", &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath) .def("set_subgraph_partition_config_buffer", &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer) .def("enable", &LiteNNAdapterConfig::Enable) .def("disable", &LiteNNAdapterConfig::Disable); } #ifdef PADDLE_WITH_MKLDNN void BindMkldnnQuantizerConfig(py::module *m) { py::class_ quantizer_config(*m, "MkldnnQuantizerConfig"); quantizer_config.def(py::init()) .def(py::init<>()) .def("set_quant_data", [](MkldnnQuantizerConfig &self, const std::vector &data) { auto warmup_data = std::make_shared>(data); self.SetWarmupData(warmup_data); return; }) .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize) .def( "set_enabled_op_types", (void (MkldnnQuantizerConfig::*)(std::unordered_set &)) & MkldnnQuantizerConfig::SetEnabledOpTypes); } #endif void BindAnalysisPredictor(py::module *m) { py::class_(*m, "AnalysisPredictor") .def(py::init()) .def("init", &AnalysisPredictor::Init) .def( "run", [](AnalysisPredictor &self, const std::vector &inputs) { std::vector outputs; self.Run(inputs, &outputs); return outputs; }) .def("get_input_tensor", &AnalysisPredictor::GetInputTensor) .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor) .def("get_input_names", &AnalysisPredictor::GetInputNames) .def("get_output_names", &AnalysisPredictor::GetOutputNames) .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape) .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun) .def("clear_intermediate_tensor", &AnalysisPredictor::ClearIntermediateTensor) .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory) .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar) .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch) .def("prepare_argument", &AnalysisPredictor::PrepareArgument) .def("optimize_inference_program", &AnalysisPredictor::OptimizeInferenceProgram) .def("analysis_argument", &AnalysisPredictor::analysis_argument, py::return_value_policy::reference) .def("clone", &AnalysisPredictor::Clone) .def("scope", &AnalysisPredictor::scope, py::return_value_policy::reference) .def("program", &AnalysisPredictor::program, py::return_value_policy::reference) .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram) .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize) .def("SaveOptimModel", &AnalysisPredictor::SaveOptimModel, py::arg("dir")); } void BindPaddleInferPredictor(py::module *m) { py::class_(*m, "PaddleInferPredictor") .def(py::init()) .def("get_input_names", &paddle_infer::Predictor::GetInputNames) .def("get_output_names", &paddle_infer::Predictor::GetOutputNames) .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle) .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle) .def("run", &paddle_infer::Predictor::Run) .def("clone", &paddle_infer::Predictor::Clone) .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory) .def("clear_intermediate_tensor", &paddle_infer::Predictor::ClearIntermediateTensor); } void BindZeroCopyTensor(py::module *m) { py::class_(*m, "ZeroCopyTensor") .def("reshape", py::overload_cast &>( &ZeroCopyTensor::Reshape)) .def("reshape", py::overload_cast( &paddle_infer::Tensor::ReshapeStrings)) .def("copy_from_cpu", &ZeroCopyTensorCreate) .def("copy_from_cpu", &ZeroCopyTensorCreate) .def("copy_from_cpu", &ZeroCopyTensorCreate) .def("copy_from_cpu", &ZeroCopyTensorCreate) .def("copy_from_cpu", &ZeroCopyStringTensorCreate) .def("copy_to_cpu", &ZeroCopyTensorToNumpy) .def("shape", &ZeroCopyTensor::shape) .def("set_lod", &ZeroCopyTensor::SetLoD) .def("lod", &ZeroCopyTensor::lod) .def("type", &ZeroCopyTensor::type); } void BindPaddleInferTensor(py::module *m) { py::class_(*m, "PaddleInferTensor") .def("reshape", py::overload_cast &>( &paddle_infer::Tensor::Reshape)) .def("reshape", py::overload_cast( &paddle_infer::Tensor::ReshapeStrings)) .def("copy_from_cpu_bind", &PaddleInferTensorCreate) .def("copy_from_cpu_bind", &PaddleInferTensorCreate) .def("copy_from_cpu_bind", &PaddleInferTensorCreate) .def("copy_from_cpu_bind", &PaddleInferTensorCreate) .def("copy_from_cpu_bind", &PaddleInferStringTensorCreate) .def("copy_to_cpu", &PaddleInferTensorToNumpy) .def("shape", &paddle_infer::Tensor::shape) .def("set_lod", &paddle_infer::Tensor::SetLoD) .def("lod", &paddle_infer::Tensor::lod) .def("type", &paddle_infer::Tensor::type); } void BindPredictorPool(py::module *m) { py::class_(*m, "PredictorPool") .def(py::init()) .def("retrive", &paddle_infer::services::PredictorPool::Retrive, py::return_value_policy::reference); } void BindPaddlePassBuilder(py::module *m) { py::class_(*m, "PaddlePassBuilder") .def(py::init &>()) .def("set_passes", [](PaddlePassBuilder &self, const std::vector &passes) { self.ClearPasses(); for (auto pass : passes) { self.AppendPass(std::move(pass)); } }) .def("append_pass", &PaddlePassBuilder::AppendPass) .def("insert_pass", &PaddlePassBuilder::InsertPass) .def("delete_pass", [](PaddlePassBuilder &self, const std::string &pass_type) { self.DeletePass(pass_type); }) .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass) .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug) .def("debug_string", &PaddlePassBuilder::DebugString) .def("all_passes", &PaddlePassBuilder::AllPasses, py::return_value_policy::reference) .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses); py::class_(*m, "PassStrategy") .def(py::init &>()) .def("enable_cudnn", &PassStrategy::EnableCUDNN) .def("enable_mkldnn", &PassStrategy::EnableMKLDNN) .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer) .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16) .def("use_gpu", &PassStrategy::use_gpu); py::class_(*m, "CpuPassStrategy") .def(py::init<>()) .def(py::init()) .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN) .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN) .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer) .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16); py::class_(*m, "GpuPassStrategy") .def(py::init<>()) .def(py::init()) .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN) .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN) .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer) .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16); } } // namespace } // namespace pybind } // namespace paddle