# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import unittest from multiprocessing import Process import os import signal from functools import reduce from test_dist_base import TestDistRunnerBase, runtime_main import paddle.distributed.fleet as fleet paddle.enable_static() DTYPE = "float32" paddle.dataset.mnist.fetch() # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Constant(value=0.01))) return predict class TestDistMnist2x2(TestDistRunnerBase): def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None): # Input data device_id = 0 if dist_strategy: fleet.init(is_collective=True) with fluid.device_guard("gpu:0"): images = fluid.layers.data( name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') if dist_strategy: data_loader = fluid.io.DataLoader.from_generator( feed_list=[images, label], capacity=64, use_double_buffer=False, iterable=False) # Train program predict = cnn_model(images) with fluid.device_guard("gpu:0"): cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator with fluid.device_guard("gpu:0"): batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) inference_program = fluid.default_main_program().clone() base_lr = self.lr passes = [30, 60, 80, 90] steps_per_pass = 10 bd = [steps_per_pass * p for p in passes] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr) opt = fluid.optimizer.Momentum(learning_rate=lr_val, momentum=0.9) # Reader train_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) if dist_strategy: strategy = fleet.DistributedStrategy() strategy.pipeline = True dist_opt = fleet.distributed_optimizer( optimizer=opt, strategy=strategy) dist_opt.minimize(avg_cost) else: opt.minimize(avg_cost) if dist_strategy: return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader else: return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict if __name__ == "__main__": runtime_main(TestDistMnist2x2)