/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "Layer.h" #include "NormLayer.h" #include "paddle/math/BaseMatrix.h" #include "paddle/math/Matrix.h" namespace paddle { void CrossChannelNormLayer::forward(PassType passType) { Layer::forward(passType); auto in = getInput(0); MatrixPtr inV = getInputValue(0); size_t batchSize = inV->getHeight(); size_t dataDim = inV->getWidth(); CHECK_EQ(getSize(), dataDim); reserveOutput(batchSize, dataDim); MatrixPtr outV = getOutputValue(); size_t spatialDim = dataDim / channels_; Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_); Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_); Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_); normBuffer_->zeroMem(); spatialBuffer_->zeroMem(); dataBuffer_->zeroMem(); // add eps to avoid overflow normBuffer_->addScalar(*normBuffer_, 1e-6); inV->square2(*dataBuffer_); for (size_t i = 0; i < batchSize; i++) { spatialBuffer_->zeroMem(); MatrixPtr inTmp = Matrix::create( inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); MatrixPtr dataTmp = Matrix::create(dataBuffer_->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); MatrixPtr outTmp = Matrix::create( outV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); MatrixPtr normTmp = Matrix::create( normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_); // compute norm. spatialBuffer_->sumCols(*dataTmp, 1, 1); spatialBuffer_->sqrt2(*spatialBuffer_); normTmp->copyFrom(*spatialBuffer_); outTmp->copyFrom(*inTmp); outTmp->divRowVector(*spatialBuffer_); // scale the layer. outTmp->mulColVector(*scale_->getW()); } } void CrossChannelNormLayer::backward(const UpdateCallback& callback) { MatrixPtr inG = getInputGrad(0); MatrixPtr inV = getInputValue(0); MatrixPtr outG = getOutputGrad(); MatrixPtr outV = getOutputValue(); auto in = getInput(0); size_t batchSize = inG->getHeight(); size_t dataDim = inG->getWidth(); size_t spatialDim = dataDim / channels_; dataBuffer_->dotMul(*outG, *outV); Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_); Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_); Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_); scaleDiff_->zeroMem(); for (size_t i = 0; i < batchSize; i++) { spatialBuffer_->zeroMem(); channelBuffer_->zeroMem(); // propagate to param. MatrixPtr dataBufferTmp = Matrix::create(dataBuffer_->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); const MatrixPtr inValueTmp = Matrix::create( inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); const MatrixPtr outGradTmp = Matrix::create( outG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); MatrixPtr inGradTmp = Matrix::create( inG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_); const MatrixPtr normTmp = Matrix::create( normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_); channelBuffer_->sumRows(*dataBufferTmp, 1, 1); channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW())); // store a / scale[i] in scaleDiff_ temporary scaleDiff_->add(*channelBuffer_, 1.); sampleBuffer_->dotMul(*inValueTmp, *outGradTmp); spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.); // scale the grad inGradTmp->copyFrom(*inValueTmp); inGradTmp->mulRowVector(*spatialBuffer_); // divide by square of norm spatialBuffer_->dotMul(*normTmp, *normTmp); inGradTmp->divRowVector(*spatialBuffer_); // subtract inGradTmp->add(*outGradTmp, -1, 1); // divide by norm inGradTmp->divRowVector(*normTmp); // scale the diff inGradTmp->mulColVector(*scale_->getW()); } // updata scale if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_); scale_->getParameterPtr()->incUpdate(callback); } } // namespace paddle