/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ syntax = "proto2"; import "ParameterConfig.proto"; package paddle; /** * Various structs for the configuration of a neural network */ message ExternalConfig { repeated string layer_names = 1; repeated string input_layer_names = 2; repeated string output_layer_names = 3; } message ActivationConfig { // identity: f(x) = x // sigmoid: f(x) = 1 / (1 + exp(-x)) // logistic: f(x) = (1 - exp(-x)) / (1+ exp(-x)) // softmax: y_i = f(x_i) = exp(x_i) / (\sum_i exp(x_i)) // relu: y = max(0, x) required string type = 1; }; message ConvConfig { // filter_size = 5, says that this layer will use // filters of size 5x5 pixels. required uint32 filter_size = 1; // The image data dimensionality. // This value must be either 1, 2, 3, or a multiple of 4. required uint32 channels = 2; // stride = 1, indicates that the distance between // successive filter applications should be 1 pixel. required uint32 stride = 3; // padding = 4, instructs the net to implicitly // pad the images with a 4-pixel border of zeros. required uint32 padding = 4; // If groups = 4 together with the filters = 32 parameter, // they state that this convolutional layer is to have 4 // groups of 32 filters. Each filter will connect to 8 // input channels. required uint32 groups = 5; required uint32 filter_channels = 6; // The size of output feature map. required uint32 output_x = 7; // The size of input feature map. required uint32 img_size = 8; // caffe mode for output size coherence required bool caffe_mode = 9 [ default = true ]; // if filter_size_y is set , this convolutional layer will use // filters of size filter_size * filter_size_y pixels. // if filter_size_y is not set, this convolutional layer will use // filters of size filter_size * filter_size required uint32 filter_size_y = 10; required uint32 padding_y = 11; required uint32 stride_y = 12; // if not set, use output_x optional uint32 output_y = 13; // if not set, use img_size optional uint32 img_size_y = 14; optional uint32 dilation = 15 [ default = 1 ]; optional uint32 dilation_y = 16 [ default = 1 ]; optional uint32 filter_size_z = 17 [ default = 1 ]; optional uint32 padding_z = 18 [ default = 1 ]; optional uint32 stride_z = 19 [ default = 1 ]; optional uint32 output_z = 20 [ default = 1 ]; optional uint32 img_size_z = 21 [ default = 1 ]; } message PoolConfig { // max or avg pooling required string pool_type = 1; required uint32 channels = 2; // Defines the size of the pooling region in // the x (equivalently, y) dimension. required uint32 size_x = 3; // Tell the net where in the input image to start the pooling. // start is deprecated now. optional uint32 start = 4; // Defines the stride size between successive pooling squares. required uint32 stride = 5 [ default = 1 ]; // The size of output feature map. required uint32 output_x = 6; // The size of input feature map. required uint32 img_size = 7; // padding = 4, instructs the net to implicitly // pad the images with a 4-pixel border of zeros. optional uint32 padding = 8 [ default = 0 ]; // if not set, use size_x optional uint32 size_y = 9; // if not set, use stride optional uint32 stride_y = 10; // if not set, use output_x optional uint32 output_y = 11; // if not set, use img_size optional uint32 img_size_y = 12; // if not set, use padding optional uint32 padding_y = 13; optional uint32 size_z = 14 [ default = 1 ]; optional uint32 stride_z = 15 [ default = 1 ]; optional uint32 output_z = 16 [ default = 1 ]; optional uint32 img_size_z = 17 [ default = 1 ]; optional uint32 padding_z = 18 [ default = 1 ]; } message SppConfig { required ImageConfig image_conf = 1; required string pool_type = 2; required uint32 pyramid_height = 3; } message NormConfig { // rnorm or cmrnorm required string norm_type = 1; required uint32 channels = 2; // rnorm: this defines the size of the local regions // used for response normalization. // cmrnorm: The size parameter indicates how many // nearby maps to use for normalization. required uint32 size = 3; // the parameters for normalization // u = u / (1+scale*sum(u^2 in window))^pow required double scale = 4; required double pow = 5; // The size of output feature map. required uint32 output_x = 6; // The size of input feature map. required uint32 img_size = 7; // normalize with fixed window or sliding window // u = u / (1+scale*sum(u^2 in window))^pow // fixed window: shared a fixed window for each value // sliding window: have a different window for each value optional bool blocked = 8; // if not set, use output_x optional uint32 output_y = 9; // if not set, use img_size optional uint32 img_size_y = 10; } message BlockExpandConfig { required uint32 channels = 1; required uint32 stride_x = 2; required uint32 stride_y = 3; required uint32 padding_x = 4; required uint32 padding_y = 5; required uint32 block_x = 6; required uint32 block_y = 7; // The size of output feature map. required uint32 output_x = 8; required uint32 output_y = 9; // The size of input feature map. required uint32 img_size_x = 10; required uint32 img_size_y = 11; } message MaxOutConfig { required ImageConfig image_conf = 1; required uint32 groups = 2; } message RowConvConfig { required uint32 context_length = 1; } message SliceConfig { required uint32 start = 1; required uint32 end = 2; } message ProjectionConfig { required string type = 1; required string name = 2; required uint64 input_size = 3; required uint64 output_size = 4; // For ShiftProjection optional int32 context_start = 5; optional int32 context_length = 6; optional bool trainable_padding = 7 [ default = false ]; // For convolution optional ConvConfig conv_conf = 8; optional int32 num_filters = 9; // For IdentityOffsetProjection optional uint64 offset = 11 [ default = 0 ]; // For pool optional PoolConfig pool_conf = 12; // For slice // Each slice output is the input[start, end) repeated SliceConfig slices = 13; } message OperatorConfig { required string type = 1; repeated int32 input_indices = 2; repeated uint64 input_sizes = 3; required uint64 output_size = 4; // For DotMulOperator optional double dotmul_scale = 5 [ default = 1.0 ]; // For ConvOperator optional ConvConfig conv_conf = 6; optional int32 num_filters = 7; } message BilinearInterpConfig { // The size of input feature map. required ImageConfig image_conf = 1; // The size of output feature map. required uint32 out_size_x = 2; required uint32 out_size_y = 3; } message ImageConfig { // The image data dimensionality. // This value must be either 1, 2, 3, or a multiple of 4. required uint32 channels = 2; // The size of input feature map. required uint32 img_size = 8; optional uint32 img_size_y = 9; optional uint32 img_size_z = 10 [ default = 1 ]; } message PriorBoxConfig { repeated uint32 min_size = 1; repeated uint32 max_size = 2; repeated float aspect_ratio = 3; repeated float variance = 4; } message PadConfig { required ImageConfig image_conf = 1; repeated uint32 pad_c = 2; repeated uint32 pad_h = 3; repeated uint32 pad_w = 4; } message MultiBoxLossConfig { required uint32 num_classes = 1; required float overlap_threshold = 2; required float neg_pos_ratio = 3; required float neg_overlap = 4; required uint32 background_id = 5; required uint32 input_num = 6; optional uint32 height = 7 [ default = 1 ]; optional uint32 width = 8 [ default = 1 ]; } message DetectionOutputConfig { required uint32 num_classes = 1; required float nms_threshold = 2; required uint32 nms_top_k = 3; required uint32 background_id = 4; required uint32 input_num = 5; required uint32 keep_top_k = 6; required float confidence_threshold = 7; optional uint32 height = 8 [ default = 1 ]; optional uint32 width = 9 [ default = 1 ]; } message ClipConfig { required double min = 1; required double max = 2; } message LayerInputConfig { required string input_layer_name = 1; optional string input_parameter_name = 2; optional ConvConfig conv_conf = 3; optional PoolConfig pool_conf = 4; optional NormConfig norm_conf = 5; optional ProjectionConfig proj_conf = 6; optional BlockExpandConfig block_expand_conf = 7; optional ImageConfig image_conf = 8; // If the input layer has multi-output. // Set the argument name. optional string input_layer_argument = 9; optional BilinearInterpConfig bilinear_interp_conf = 10; optional MaxOutConfig maxout_conf = 11; optional SppConfig spp_conf = 12; optional PriorBoxConfig priorbox_conf = 13; optional PadConfig pad_conf = 14; optional RowConvConfig row_conv_conf = 15; optional MultiBoxLossConfig multibox_loss_conf = 16; optional DetectionOutputConfig detection_output_conf = 17; optional ClipConfig clip_conf = 18; } message LayerConfig { required string name = 1; required string type = 2; optional uint64 size = 3; // optional ActivationConfig activation = 4; optional string active_type = 4; repeated LayerInputConfig inputs = 5; optional string bias_parameter_name = 6; // This number must be a multiple of 16. optional uint32 num_filters = 7; // indicates that the biases of every filter in this layer // should be shared amongst all applications of that filter // (which is how convnets are usually trained). Setting this to // false will untie the biases, yielding a separate bias for // every location at which the filter is applied. optional bool shared_biases = 8 [ default = false ]; // Valid values are ones that divide the area of the output // grid in this convolutional layer. For example if this layer // produces 32-channel 20x20 output grid, valid values of // partialSum are ones which divide 20*20 = 400. // I'll update this comments when confirmed optional uint32 partial_sum = 9; // for dropout optional double drop_rate = 10; // for HierarchicalSoftmaxLayer and NCELayer // the number of classes optional uint32 num_classes = 11; // the gpu device which the Layer's data in. // Only used by ParallelNeuralNetork. Ignored otherwise. optional int32 device = 12 [ default = -1 ]; // for recurrent layer. If true, the recurrence runs from the end to the // beginning. optional bool reversed = 13 [ default = false ]; // for lstmemory layer. Different types of nodes have different activation // type. optional string active_gate_type = 14; optional string active_state_type = 15; // For NCELayer // The number of random negative labels for each sample optional int32 num_neg_samples = 16 [ default = 10 ]; // For NCELayer // The distribution for generating the random negative labels. // A uniform distribution will be used if not provided repeated double neg_sampling_dist = 17 [ packed = true ]; // For MaxLayer // default: output VALUE of MaxLayer. set this flag to true for output INDEX // INDEX will be put in Argument::value as double values. optional bool output_max_index = 19 [ default = false ]; /// The filed number 20 have been deprecated. // For self-normalized estimation optional double softmax_selfnorm_alpha = 21 [ default = 0.1 ]; /// The filed numbers 22 and 23 have been deprecated. // for MDLstmLayer repeated bool directions = 24; // for CTCLayer optional bool norm_by_times = 25; // for CostLayers optional double coeff = 26 [ default = 1.0 ]; // for AverageLayer // can be set to: 'average', 'sum' or 'squarerootn' optional string average_strategy = 27; // for error clipping optional double error_clipping_threshold = 28 [ default = 0.0 ]; // for operators used by mixed layer repeated OperatorConfig operator_confs = 29; // for lambdaCost optional int32 NDCG_num = 30; optional int32 max_sort_size = 31; // for SlopeInterceptLayer optional double slope = 32; optional double intercept = 33; // for CosSimVecMatLayer and CosSimLayer optional double cos_scale = 34; // for DataNormLayer // can be set to: 'z-score', 'min-max' or 'decimal-scaling' optional string data_norm_strategy = 36; // for bos/eos id optional uint32 bos_id = 37; optional uint32 eos_id = 38; // for max id layer optional uint32 beam_size = 39; // for seqlastins layer, whether select first instead last optional bool select_first = 40 [ default = false ]; // for seqlastins layer, AverageLayer, MaxLayer and ExpandLayer // can be set to: 'non-seq','seq' optional string trans_type = 41 [ default = 'non-seq' ]; // to indicate whether selective_fc layer // is used in sequence generation or not optional bool selective_fc_pass_generation = 42 [ default = false ]; // to indicate whether selective_fc layer take its last input to // selected several columns and only compute the multiplications // between the input matrices and the selected columns of // the parameter matrices of this layer. // if set false, selective_fc degrades into fc. optional bool has_selected_colums = 43 [ default = true ]; // this parameter is for speed consideration. // if number of the selected columns is less than // sample number * selective_fc output size * selective_fc_mull_mull_ratio // sparse multiplication is used, otherwise, using full multiplication. optional double selective_fc_full_mul_ratio = 44 [ default = 0.02 ]; // to indicate how many threads selective_fc use to to accelate // the plain_mul period // leave empty or set to 0 to disable multi-thread accleleration optional uint32 selective_fc_parallel_plain_mul_thread_num = 45 [ default = 0 ]; // for batch normalization layer // if set use_global_stats true, will use the loaded mean and variance. optional bool use_global_stats = 46; // use to compute moving mean and variance. optional double moving_average_fraction = 47 [ default = 0.9 ]; // bias size optional uint32 bias_size = 48 [ default = 0 ]; // this parameter can be used as a user-defined parameter when necessary, // without changing the proto file. // e.g., when a new layer with a user-defined parameter is implemented, // it can be used to pass that parameter, without modifying the proto file. // string type is used for flexibility: different types can be converted // to string and reinterpreted in the user's own layer implementation. optional string user_arg = 49; // to indicate rectangle image data optional uint64 height = 50; optional uint64 width = 51; // blank label used in ctc loss optional uint32 blank = 52 [ default = 0 ]; // stride parameter for seqlastins layer, AverageLayer, MaxLayer, which // controls the scope of pooling operation. can be set > 0. // leave empty or set to -1 to disable this stride pooling. optional int32 seq_pool_stride = 53 [ default = -1 ]; // for crop layer optional int32 axis = 54 [ default = 2 ]; repeated uint32 offset = 55; repeated uint32 shape = 56; // for HuberRegressionLoss optional double delta = 57 [ default = 1.0 ]; // for 3D data optional uint64 depth = 58 [ default = 1 ]; } message EvaluatorConfig { required string name = 1; required string type = 2; repeated string input_layers = 3; // Used by ChunkEvaluator // one of "IOB", "IOE", "IOBES" optional string chunk_scheme = 4; // number of chunk types other than "other" optional int32 num_chunk_types = 5; // Used by PrecisionRecallEvaluator and ClassificationErrorEvaluator // For multi binary labels: true if output > classification_threshold optional double classification_threshold = 6 [ default = 0.5 ]; // The positive label. -1 means average precision and recall optional int32 positive_label = 7 [ default = -1 ]; // load dict from this file optional string dict_file = 8; // dump result in this file optional string result_file = 9; // top # results for max id printer optional int32 num_results = 10 [ default = 1 ]; // whether to delimit the sequence in the seq_text_printer optional bool delimited = 11 [ default = true ]; // Used by ChunkEvaluator // chunk of these types are not counted repeated int32 excluded_chunk_types = 12; // Used by ClassificationErrorEvaluator // top # classification error optional int32 top_k = 13 [ default = 1 ]; // Used by DetectionMAPEvaluator optional double overlap_threshold = 14 [ default = 0.5 ]; optional int32 background_id = 15 [ default = 0 ]; optional bool evaluate_difficult = 16 [ default = false ]; optional string ap_type = 17 [ default = "11point" ]; } message LinkConfig { required string layer_name = 1; required string link_name = 2; // If true, this link has sub-sequence optional bool has_subseq = 3 [ default = false ]; } message MemoryConfig { required string layer_name = 1; required string link_name = 2; optional string boot_layer_name = 3; optional string boot_bias_parameter_name = 4; optional string boot_bias_active_type = 5; optional uint32 boot_with_const_id = 7; // memory is a sequence, initailized by a sequence boot layer optional bool is_sequence = 6 [ default = false ]; } message GeneratorConfig { required uint32 max_num_frames = 1; required string eos_layer_name = 2; optional int32 num_results_per_sample = 3 [ default = 1 ]; // for beam search optional int32 beam_size = 4 [ default = 1 ]; optional bool log_prob = 5 [ default = true ]; } message SubModelConfig { required string name = 1; repeated string layer_names = 2; // selected layers in sub model repeated string input_layer_names = 3; repeated string output_layer_names = 4; repeated string evaluator_names = 5; optional bool is_recurrent_layer_group = 6 [ default = false ]; // If true, the recurrence runs from the end to the beginning. optional bool reversed = 7 [ default = false ]; // name and link name of memory repeated MemoryConfig memories = 8; // if use recurrent layer group, all layers in submodel will postfix by // "_in_"+submodel.name, so we add a name pair to link between // root model and layer group, // note that these in/out layers are not input/output of the network. repeated LinkConfig in_links = 9; repeated LinkConfig out_links = 10; optional GeneratorConfig generator = 11; // the id of inlink which share info with outlinks, used in recurrent layer // group optional int32 target_inlinkid = 12; } message ModelConfig { // type of the model. // Currently, "nn", "recurrent_nn" and "recursive_nn" are supported required string type = 1 [ default = "nn" ]; // layers should be ordered in such a way that the forward propagation // can be correctly executed by going from the first layer to the last layer repeated LayerConfig layers = 2; repeated ParameterConfig parameters = 3; // Input layers should have the same order as the data streams provided // by the data provider. The type of input layers should be "data" repeated string input_layer_names = 4; // For training, the type of a output layer is usually cost layer. // For prediction, they should be the actual output layers. repeated string output_layer_names = 5; repeated EvaluatorConfig evaluators = 6; repeated SubModelConfig sub_models = 8; // For External Machine, defining how to split a neural network // into multiple parts. optional ExternalConfig external_config = 9; };