/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include // NOLINT #include "gflags/gflags.h" #include "gtest/gtest.h" #include "paddle/fluid/inference/tests/test_helper.h" #ifdef PADDLE_WITH_MKLML #include #include #endif DEFINE_string(modelpath, "", "Directory of the inference model."); DEFINE_string(datafile, "", "File of input index data."); DEFINE_int32(repeat, 100, "Running the inference program repeat times"); DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference"); DEFINE_bool(prepare_vars, true, "Prepare variables before executor"); DEFINE_int32(num_threads, 1, "Number of threads should be used"); inline double GetCurrentMs() { struct timeval time; gettimeofday(&time, NULL); return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec; } // Load the input word index data from file and save into LodTensor. // Return the size of words. size_t LoadData(std::vector* out, const std::string& filename) { size_t sz = 0; std::fstream fin(filename); std::string line; out->clear(); while (getline(fin, line)) { std::istringstream iss(line); std::vector ids; std::string field; while (getline(iss, field, ' ')) { ids.push_back(stoi(field)); } if (ids.size() >= 1024) { continue; } paddle::framework::LoDTensor words; paddle::framework::LoD lod{{0, ids.size()}}; words.set_lod(lod); int64_t* pdata = words.mutable_data( {static_cast(ids.size()), 1}, paddle::platform::CPUPlace()); memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t)); out->emplace_back(words); sz += ids.size(); } return sz; } // Split input data samples into small pieces jobs as balanced as possible, // according to the number of threads. void SplitData( const std::vector& datasets, std::vector>* jobs, const int num_threads) { size_t s = 0; jobs->resize(num_threads); while (s < datasets.size()) { for (auto it = jobs->begin(); it != jobs->end(); it++) { it->emplace_back(&datasets[s]); s++; if (s >= datasets.size()) { break; } } } } void ThreadRunInfer( const int tid, paddle::framework::Executor* executor, paddle::framework::Scope* scope, const std::unique_ptr& inference_program, const std::vector>& jobs) { auto copy_program = std::unique_ptr( new paddle::framework::ProgramDesc(*inference_program)); auto& sub_scope = scope->NewScope(); std::string feed_holder_name = "feed_" + paddle::string::to_string(tid); std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid); copy_program->SetFeedHolderName(feed_holder_name); copy_program->SetFetchHolderName(fetch_holder_name); const std::vector& feed_target_names = copy_program->GetFeedTargetNames(); const std::vector& fetch_target_names = copy_program->GetFetchTargetNames(); PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); std::map fetch_targets; paddle::framework::LoDTensor outtensor; fetch_targets[fetch_target_names[0]] = &outtensor; std::map feed_targets; PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL); auto& inputs = jobs[tid]; auto start_ms = GetCurrentMs(); for (size_t i = 0; i < inputs.size(); ++i) { feed_targets[feed_target_names[0]] = inputs[i]; executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets, true /*create_local_scope*/, true /*create_vars*/, feed_holder_name, fetch_holder_name); } auto stop_ms = GetCurrentMs(); scope->DeleteScope(&sub_scope); LOG(INFO) << "Tid: " << tid << ", process " << inputs.size() << " samples, avg time per sample: " << (stop_ms - start_ms) / inputs.size() << " ms"; } TEST(inference, nlp) { if (FLAGS_modelpath.empty() || FLAGS_datafile.empty()) { LOG(FATAL) << "Usage: ./example --modelpath=path/to/your/model " << "--datafile=path/to/your/data"; } LOG(INFO) << "Model Path: " << FLAGS_modelpath; LOG(INFO) << "Data File: " << FLAGS_datafile; std::vector datasets; size_t num_total_words = LoadData(&datasets, FLAGS_datafile); LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size(); LOG(INFO) << "Total number of words: " << num_total_words; const bool model_combined = false; // 0. Call `paddle::framework::InitDevices()` initialize all the devices // 1. Define place, executor, scope auto place = paddle::platform::CPUPlace(); auto executor = paddle::framework::Executor(place); std::unique_ptr scope( new paddle::framework::Scope()); // 2. Initialize the inference_program and load parameters std::unique_ptr inference_program; inference_program = InitProgram(&executor, scope.get(), FLAGS_modelpath, model_combined); if (FLAGS_use_mkldnn) { EnableMKLDNN(inference_program); } #ifdef PADDLE_WITH_MKLML // only use 1 thread number per std::thread omp_set_dynamic(0); omp_set_num_threads(1); mkl_set_num_threads(1); #endif double start_ms = 0, stop_ms = 0; if (FLAGS_num_threads > 1) { std::vector> jobs; SplitData(datasets, &jobs, FLAGS_num_threads); std::vector> threads; for (int i = 0; i < FLAGS_num_threads; ++i) { threads.emplace_back( new std::thread(ThreadRunInfer, i, &executor, scope.get(), std::ref(inference_program), std::ref(jobs))); } start_ms = GetCurrentMs(); for (int i = 0; i < FLAGS_num_threads; ++i) { threads[i]->join(); } stop_ms = GetCurrentMs(); } else { if (FLAGS_prepare_vars) { executor.CreateVariables(*inference_program, scope.get(), 0); } // always prepare context std::unique_ptr ctx; ctx = executor.Prepare(*inference_program, 0); // preapre fetch const std::vector& fetch_target_names = inference_program->GetFetchTargetNames(); PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); std::map fetch_targets; paddle::framework::LoDTensor outtensor; fetch_targets[fetch_target_names[0]] = &outtensor; // prepare feed const std::vector& feed_target_names = inference_program->GetFeedTargetNames(); PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL); std::map feed_targets; // feed data and run start_ms = GetCurrentMs(); for (size_t i = 0; i < datasets.size(); ++i) { feed_targets[feed_target_names[0]] = &(datasets[i]); executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets, &fetch_targets, !FLAGS_prepare_vars); } stop_ms = GetCurrentMs(); LOG(INFO) << "Tid: 0, process " << datasets.size() << " samples, avg time per sample: " << (stop_ms - start_ms) / datasets.size() << " ms"; } LOG(INFO) << "Total inference time with " << FLAGS_num_threads << " threads : " << (stop_ms - start_ms) / 1000.0 << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000); }