// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/inference/api/paddle_analysis_config.h" #include "paddle/fluid/inference/api/paddle_pass_builder.h" #include "paddle/fluid/inference/utils/table_printer.h" #include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/utils/string/split.h" #ifdef PADDLE_WITH_TENSORRT #include "paddle/fluid/inference/tensorrt/helper.h" #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) DECLARE_uint64(initial_gpu_memory_in_mb); #endif namespace paddle { struct MkldnnQuantizerConfig; extern const std::vector kTRTSubgraphPasses; extern const std::vector kDlnneSubgraphPasses; extern const std::vector kLiteSubgraphPasses; PassStrategy *AnalysisConfig::pass_builder() const { if (!pass_builder_.get()) { if (use_gpu_) { LOG(INFO) << "Create GPU IR passes"; pass_builder_.reset(new GpuPassStrategy); } else if (use_xpu_) { pass_builder_.reset(new XpuPassStrategy); } else if (use_npu_) { pass_builder_.reset(new NpuPassStrategy); } else if (use_ipu_) { LOG(INFO) << "Create IPU IR passes"; pass_builder_.reset(new IpuPassStrategy); } else { LOG(INFO) << "Create CPU IR passes"; pass_builder_.reset(new CpuPassStrategy); } } else if (pass_builder_->use_gpu() ^ use_gpu()) { LOG(WARNING) << "The use_gpu flag is not compatible between Config and " "PassBuilder, the flags are " << use_gpu() << " " << pass_builder_->use_gpu(); LOG(WARNING) << "Please make them compatible, still use the existing " "PassBuilder."; } return pass_builder_.get(); } AnalysisConfig::AnalysisConfig(const std::string &model_dir) { model_dir_ = model_dir; Update(); } AnalysisConfig::AnalysisConfig(const std::string &prog_file, const std::string ¶ms_file) { prog_file_ = prog_file; params_file_ = params_file; Update(); } void AnalysisConfig::SetModel(const std::string &prog_file_path, const std::string ¶ms_file_path) { prog_file_ = prog_file_path; params_file_ = params_file_path; Update(); } void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) use_gpu_ = true; memory_pool_init_size_mb_ = memory_pool_init_size_mb; FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_; gpu_device_id_ = device_id; #else LOG(ERROR) << "Please compile with gpu to EnableGpu()"; use_gpu_ = false; #endif Update(); } void AnalysisConfig::SetExecStream(void *stream) { PADDLE_ENFORCE_NOT_NULL( stream, platform::errors::InvalidArgument("`stream` should not be nullptr")); exec_stream_ = stream; use_external_stream_ = true; Update(); } void *AnalysisConfig::GetExecStream() const { PADDLE_ENFORCE_NOT_NULL( exec_stream_, platform::errors::InvalidArgument("`stream` should not be nullptr")); return exec_stream_; } bool AnalysisConfig::external_stream_enabled() const { return use_external_stream_; } void AnalysisConfig::DisableGpu() { use_gpu_ = false; Update(); } void AnalysisConfig::DisableFCPadding() { use_fc_padding_ = false; Update(); } void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked, bool autotune, const std::string &autotune_file, const std::string &precision, bool adaptive_seqlen, bool enable_multi_stream) { use_xpu_ = true; xpu_l3_workspace_size_ = l3_workspace_size; xpu_locked_ = locked; xpu_autotune_ = autotune; xpu_autotune_file_ = autotune_file; xpu_precision_ = precision; xpu_adaptive_seqlen_ = adaptive_seqlen; xpu_enable_multi_stream_ = enable_multi_stream; Update(); } void AnalysisConfig::SetXpuDeviceId(int device_id) { PADDLE_ENFORCE_EQ(use_xpu_, true, platform::errors::PreconditionNotMet( "Should call EnableXpu before SetXpuDeviceId.")); xpu_device_id_ = device_id; Update(); } void AnalysisConfig::EnableNpu(int device_id) { #if defined(PADDLE_WITH_ASCEND_CL) use_npu_ = true; npu_device_id_ = device_id; #elif defined(PADDLE_WITH_CUSTOM_DEVICE) use_custom_device_ = true; custom_device_id_ = device_id; custom_device_type_ = "npu"; #else LOG(ERROR) << "Please compile with npu to EnableNpu()"; use_npu_ = false; #endif Update(); } void AnalysisConfig::EnableCustomDevice(const std::string &device_type, int device_id) { #ifdef PADDLE_WITH_CUSTOM_DEVICE use_custom_device_ = true; custom_device_id_ = device_id; custom_device_type_ = device_type; #else LOG(ERROR) << "Please compile with CustomDevice to EnableCustomDevice()"; use_custom_device_ = false; #endif Update(); } void AnalysisConfig::EnableIpu(int ipu_device_num, int ipu_micro_batch_size, bool ipu_enable_pipelining, int ipu_batches_per_step) { enable_ir_optim_ = true; use_ipu_ = true; ipu_device_num_ = ipu_device_num; ipu_micro_batch_size_ = ipu_micro_batch_size; ipu_enable_pipelining_ = ipu_enable_pipelining; ipu_batches_per_step_ = ipu_batches_per_step; Update(); } void AnalysisConfig::SetIpuConfig(bool ipu_enable_fp16, int ipu_replica_num, float ipu_available_memory_proportion, bool ipu_enable_half_partial, bool ipu_enable_model_runtime_executor) { ipu_enable_fp16_ = ipu_enable_fp16; ipu_replica_num_ = ipu_replica_num; ipu_available_memory_proportion_ = ipu_available_memory_proportion; ipu_enable_half_partial_ = ipu_enable_half_partial; ipu_enable_model_runtime_executor_ = ipu_enable_model_runtime_executor; Update(); } void AnalysisConfig::SetIpuCustomInfo( const std::vector> &ipu_custom_ops_info, const std::map &ipu_custom_patterns) { ipu_custom_ops_info_ = ipu_custom_ops_info; for (auto iter = ipu_custom_patterns.begin(); iter != ipu_custom_patterns.end(); iter++) { if (iter->second == true) { ipu_custom_patterns_.push_back( std::vector{iter->first, "True"}); } else if (iter->second == false) { ipu_custom_patterns_.push_back( std::vector{iter->first, "False"}); } } Update(); } void AnalysisConfig::LoadIpuConfig(const std::string &config_path) { std::ifstream fin(config_path, std::ios::in); PADDLE_ENFORCE_EQ( static_cast(fin.is_open()), true, platform::errors::NotFound( "Cannot open file %s, please confirm whether the file is normal.", config_path)); std::string line; while (std::getline(fin, line)) { // remove all space line.erase(std::remove(line.begin(), line.end(), ' '), line.end()); std::string key; std::string value; std::istringstream stream(line); // Split string to key and value based on the first `,` std::getline(stream, key, ','); std::getline(stream, value); auto string2bool = [](std::string s) { std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) { return ::tolower(c); }); return s == "true" || s == "1"; }; // ipu_custom_ops_info: // [[paddle_op_name, popart_op_name, domain, version], [paddle_op_name, // popart_op_name, domain, version]...] // ipu_custom_patterns: // [[paddle_op_name, enable_pattern], [paddle_op_name, enable_pattern]...] auto string2vector = [](std::string s) { std::vector> custom_info; s.erase(0, 1); s.pop_back(); std::string one; std::istringstream s_stream(s); while (std::getline(s_stream, one, ']')) { if (!one.empty()) { // remove `[` one.erase(0, 1); custom_info.push_back(paddle::string::Split(one, ',')); } } return custom_info; }; if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) { PADDLE_THROW(platform::errors::InvalidArgument( "invalid key {} in IPU config: ", key)); } switch (ipu_config_mapper_.at(key)) { case ipu_config_code::ipu_device_num: ipu_device_num_ = std::stoi(value); break; case ipu_config_code::ipu_micro_batch_size: ipu_micro_batch_size_ = std::stoi(value); break; case ipu_config_code::ipu_enable_pipelining: ipu_enable_pipelining_ = string2bool(value); break; case ipu_config_code::ipu_batches_per_step: ipu_batches_per_step_ = std::stoi(value); break; case ipu_config_code::ipu_enable_fp16: ipu_enable_fp16_ = string2bool(value); break; case ipu_config_code::ipu_replica_num: ipu_replica_num_ = std::stoi(value); break; case ipu_config_code::ipu_available_memory_proportion: ipu_available_memory_proportion_ = std::stof(value); break; case ipu_config_code::ipu_enable_half_partial: ipu_enable_half_partial_ = string2bool(value); break; case ipu_config_code::ipu_custom_ops_info: ipu_custom_ops_info_ = string2vector(value); break; case ipu_config_code::ipu_custom_patterns: ipu_custom_patterns_ = string2vector(value); break; case ipu_config_code::ipu_enable_model_runtime_executor: ipu_enable_model_runtime_executor_ = string2bool(value); break; default: PADDLE_THROW(platform::errors::InvalidArgument( "invalid key {} in IPU config", key)); break; } } Update(); } void AnalysisConfig::EnableONNXRuntime() { #ifdef PADDLE_WITH_ONNXRUNTIME use_onnxruntime_ = true; #else LOG(ERROR) << "Please compile with onnxruntime to EnableONNXRuntime()"; use_onnxruntime_ = false; #endif Update(); } void AnalysisConfig::DisableONNXRuntime() { use_onnxruntime_ = false; Update(); } void AnalysisConfig::EnableORTOptimization() { #ifdef PADDLE_WITH_ONNXRUNTIME enable_ort_optimization_ = true; #else LOG(ERROR) << "Please compile with onnxruntime to EnableORTOptimization()"; enable_ort_optimization_ = false; #endif Update(); } AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) { #define CP_MEMBER(member__) member__ = other.member__; // Model related. CP_MEMBER(model_dir_); CP_MEMBER(model_from_memory_); // the memory model reuses prog_file_ and // params_file_ fields. CP_MEMBER(opt_cache_dir_); CP_MEMBER(prog_file_); CP_MEMBER(params_file_); CP_MEMBER(use_fc_padding_); // GPU related. CP_MEMBER(use_gpu_); CP_MEMBER(use_external_stream_); CP_MEMBER(exec_stream_); CP_MEMBER(use_cudnn_); CP_MEMBER(gpu_device_id_); CP_MEMBER(memory_pool_init_size_mb_); // Mixed related. CP_MEMBER(mixed_black_list_); CP_MEMBER(enable_memory_optim_); // TensorRT related. CP_MEMBER(use_tensorrt_); CP_MEMBER(tensorrt_workspace_size_); CP_MEMBER(tensorrt_max_batchsize_); CP_MEMBER(tensorrt_min_subgraph_size_); CP_MEMBER(tensorrt_precision_mode_); CP_MEMBER(trt_disabled_ops_); CP_MEMBER(trt_use_dla_); CP_MEMBER(trt_dla_core_); CP_MEMBER(trt_use_static_engine_); CP_MEMBER(trt_use_calib_mode_); CP_MEMBER(trt_use_varseqlen_); CP_MEMBER(trt_with_interleaved_); CP_MEMBER(tensorrt_transformer_posid_); CP_MEMBER(tensorrt_transformer_maskid_); CP_MEMBER(trt_tuned_dynamic_shape_); CP_MEMBER(trt_allow_build_at_runtime_); CP_MEMBER(collect_shape_range_info_); CP_MEMBER(shape_range_info_path_); CP_MEMBER(trt_use_inspector_); CP_MEMBER(trt_engine_memory_sharing_); // Dlnne related CP_MEMBER(use_dlnne_); CP_MEMBER(dlnne_min_subgraph_size_); CP_MEMBER(dlnne_max_batchsize_); CP_MEMBER(dlnne_use_static_batch_); CP_MEMBER(dlnne_weight_share_mode_); CP_MEMBER(dlnne_use_calib_mode_); CP_MEMBER(dlnne_precision_mode_); CP_MEMBER(dlnne_disable_nodes_by_outputs_); CP_MEMBER(dlnne_input_shape_dict_); // MKLDNN related. CP_MEMBER(use_mkldnn_); CP_MEMBER(mkldnn_enabled_op_types_); CP_MEMBER(mkldnn_cache_capacity_); // Bfloat16 related. CP_MEMBER(use_mkldnn_bfloat16_); CP_MEMBER(bfloat16_enabled_op_types_); // Quantization related. CP_MEMBER(use_mkldnn_int8_); CP_MEMBER(quantize_enabled_op_types_); CP_MEMBER(quantize_excluded_op_ids_); CP_MEMBER(use_mkldnn_quantizer_); CP_MEMBER(mkldnn_quantizer_config_); CP_MEMBER(min_input_shape_); CP_MEMBER(max_input_shape_); CP_MEMBER(optim_input_shape_); CP_MEMBER(disable_trt_plugin_fp16_); CP_MEMBER(use_lite_); CP_MEMBER(lite_precision_mode_); CP_MEMBER(lite_passes_filter_); CP_MEMBER(lite_ops_filter_); CP_MEMBER(lite_zero_copy_); // XPU related. CP_MEMBER(use_xpu_); CP_MEMBER(xpu_device_id_); CP_MEMBER(xpu_l3_workspace_size_); CP_MEMBER(xpu_locked_); CP_MEMBER(xpu_autotune_); CP_MEMBER(xpu_autotune_file_); CP_MEMBER(xpu_precision_); CP_MEMBER(xpu_adaptive_seqlen_); CP_MEMBER(xpu_enable_multi_stream_); // Lite OpenCL Related CP_MEMBER(use_opencl_); // NPU related. CP_MEMBER(use_npu_); CP_MEMBER(npu_device_id_); CP_MEMBER(nnadapter_config_); // profile related. CP_MEMBER(with_profile_); // glog related. CP_MEMBER(with_glog_info_); // Ir related. CP_MEMBER(enable_ir_optim_); CP_MEMBER(use_feed_fetch_ops_); CP_MEMBER(ir_debug_); CP_MEMBER(specify_input_name_); CP_MEMBER(cpu_math_library_num_threads_); CP_MEMBER(serialized_info_cache_); CP_MEMBER(thread_local_stream_); // ipu related CP_MEMBER(use_ipu_); CP_MEMBER(ipu_device_num_); CP_MEMBER(ipu_micro_batch_size_); CP_MEMBER(ipu_enable_pipelining_); CP_MEMBER(ipu_batches_per_step_); CP_MEMBER(ipu_enable_fp16_); CP_MEMBER(ipu_replica_num_); CP_MEMBER(ipu_available_memory_proportion_); CP_MEMBER(ipu_enable_half_partial_); CP_MEMBER(ipu_enable_model_runtime_executor_); CP_MEMBER(ipu_custom_ops_info_); CP_MEMBER(ipu_custom_patterns_); // fleet exe related CP_MEMBER(dist_config_); // custom device related. CP_MEMBER(use_custom_device_); CP_MEMBER(custom_device_type_); CP_MEMBER(custom_device_id_); // JITLayer relate CP_MEMBER(apply_optim_); CP_MEMBER(skip_load_params_); if (use_gpu_) { PADDLE_ENFORCE_EQ(use_xpu_, false, platform::errors::InvalidArgument( "Only one choice can be made between CPU and XPU.")); pass_builder_.reset(new GpuPassStrategy( *static_cast(other.pass_builder()))); } else if (use_ipu_) { pass_builder_.reset(new IpuPassStrategy( *static_cast(other.pass_builder()))); } else if (use_xpu_) { pass_builder_.reset(new XpuPassStrategy( *static_cast(other.pass_builder()))); } else if (use_npu_) { pass_builder_.reset(new NpuPassStrategy( *static_cast(other.pass_builder()))); } else { pass_builder_.reset(new CpuPassStrategy( *static_cast(other.pass_builder()))); } #undef CP_MEMBER Update(); if (use_tensorrt_) { // Update() will reset all the passes, when some tensorRT pass is deleted in // other.pass_builder(), it will set again, so we just remove the // deleted_pass. pass_builder_->ClearPasses(); auto other_passes = other.pass_builder()->AllPasses(); for (auto pass : other_passes) { pass_builder_->AppendPass(pass); } } if (use_dlnne_) { auto all_passes = kDlnneSubgraphPasses; auto other_passes = other.pass_builder()->AllPasses(); // We should sort them, because the user may call the SwitchIrDebug // interface, which will change the pass. std::sort(all_passes.begin(), all_passes.end()); std::sort(other_passes.begin(), other_passes.end()); std::vector deleted_passes; std::set_difference(all_passes.begin(), all_passes.end(), other_passes.begin(), other_passes.end(), std::inserter(deleted_passes, deleted_passes.begin())); for (auto ps : deleted_passes) { pass_builder_->DeletePass(ps); } } for (auto &delete_pass : other.pass_builder()->GetAllDeletedPasses()) { pass_builder_->DeletePass(delete_pass); } } void AnalysisConfig::EnableCUDNN() { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) use_cudnn_ = use_gpu_; #else LOG(ERROR) << "Please compile with CUDA first to use cuDNN"; use_cudnn_ = false; #endif Update(); } void AnalysisConfig::EnableMKLDNN() { #ifdef PADDLE_WITH_MKLDNN use_mkldnn_ = true; #else LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN"; use_mkldnn_ = false; #endif Update(); } void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) { #ifdef PADDLE_WITH_MKLDNN mkldnn_cache_capacity_ = capacity; #else LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id"; mkldnn_cache_capacity_ = 0; #endif } void AnalysisConfig::EnableMkldnnQuantizer() { #ifdef PADDLE_WITH_MKLDNN if (!mkldnn_quantizer_config_) mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig()); use_mkldnn_quantizer_ = true; #else LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer"; use_mkldnn_quantizer_ = false; #endif Update(); } void AnalysisConfig::EnableMkldnnBfloat16() { #ifdef PADDLE_WITH_MKLDNN if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) { use_mkldnn_bfloat16_ = true; LOG(INFO) << "Hardware support for BFLOAT16" << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16) ? " is enabled" : " is disabled. Simulation will be used"); } else { LOG(INFO) << "CPU does not support BFLOAT16 calculations"; use_mkldnn_bfloat16_ = false; } #else LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16"; use_mkldnn_bfloat16_ = false; #endif Update(); } void AnalysisConfig::DisableMkldnnFcPasses() { #ifdef PADDLE_WITH_MKLDNN disable_mkldnn_fc_passes_ = true; #else LOG(ERROR) << "Please compile with MKLDNN first to use DisableMkldnnFcPasses"; disable_mkldnn_fc_passes_ = false; #endif Update(); } void AnalysisConfig::EnableMkldnnInt8( const std::unordered_set &op_list) { #ifdef PADDLE_WITH_MKLDNN use_mkldnn_int8_ = true; use_fc_padding_ = false; if (!op_list.empty()) { for (auto &type : op_list) { if (!quantize_enabled_op_types_.count(type)) { LOG(ERROR) << "There are unsupported operators in the configured " "quantization operator list. The unsupported operator " "is: " << type; use_mkldnn_int8_ = false; break; } } if (use_mkldnn_int8_) { quantize_enabled_op_types_.clear(); quantize_enabled_op_types_.insert(op_list.begin(), op_list.end()); } } #else LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnInt8"; use_mkldnn_int8_ = false; #endif Update(); } MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const { PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_, platform::errors::PreconditionNotMet( "MkldnnQuantizer was not enabled yet.")); return mkldnn_quantizer_config_.get(); } void AnalysisConfig::EnableTensorRtEngine( int64_t workspace_size, int max_batch_size, int min_subgraph_size, AnalysisConfig::Precision precision_mode, bool use_static, bool use_calib_mode) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (!use_gpu()) { LOG(ERROR) << "To use TensorRT engine, please call EnableUseGpu() first"; return; } use_tensorrt_ = true; tensorrt_workspace_size_ = workspace_size; tensorrt_max_batchsize_ = max_batch_size; tensorrt_min_subgraph_size_ = min_subgraph_size; tensorrt_precision_mode_ = precision_mode; trt_use_static_engine_ = use_static; trt_use_calib_mode_ = use_calib_mode; Update(); #else LOG(ERROR) << "To use TensorRT engine, please compile inference lib with GPU first."; #endif } void AnalysisConfig::EnableTensorRTMemoryOptim(bool engine_memory_sharing, int sharing_identifier) { PADDLE_ENFORCE_EQ( use_tensorrt_, true, platform::errors::InvalidArgument( "To enable TensorRT memory optim, please call " "EnableTensorRtEngine or enable_tensorrt_engine first.")); PADDLE_ENFORCE_GE(sharing_identifier, 0, platform::errors::InvalidArgument( "The value of sharing_identifier must be greater " "than or equal to 0.")); if (!engine_memory_sharing) { PADDLE_ENFORCE_EQ(sharing_identifier, 0, platform::errors::InvalidArgument( "The value of sharing_identifier must be equal to 0 " "when engine_memory_sharing is false.")); } trt_engine_memory_sharing_ = engine_memory_sharing; trt_engine_memory_sharing_identifier_ = sharing_identifier; } void AnalysisConfig::EnableDlnne( int min_subgraph_size, int max_batch_size, bool use_static_batch, std::string weight_share_mode, std::unordered_set disable_nodes_by_ouputs, std::map> dlnne_input_shape_dict, bool use_calib_mode, AnalysisConfig::Precision precision_mode) { use_dlnne_ = true; dlnne_min_subgraph_size_ = min_subgraph_size; dlnne_max_batchsize_ = max_batch_size; dlnne_use_static_batch_ = use_static_batch; dlnne_weight_share_mode_ = weight_share_mode; dlnne_disable_nodes_by_outputs_ = disable_nodes_by_ouputs; dlnne_input_shape_dict_ = dlnne_input_shape_dict; dlnne_use_calib_mode_ = use_calib_mode; dlnne_precision_mode_ = precision_mode; Update(); } void AnalysisConfig::SetTRTDynamicShapeInfo( std::map> min_input_shape, std::map> max_input_shape, std::map> optim_input_shape, bool disable_trt_plugin_fp16) { min_input_shape_ = min_input_shape; max_input_shape_ = max_input_shape; optim_input_shape_ = optim_input_shape; disable_trt_plugin_fp16_ = disable_trt_plugin_fp16; } void AnalysisConfig::EnableTensorRtDLA(int dla_core) { trt_use_dla_ = true; trt_dla_core_ = dla_core; } void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; } void AnalysisConfig::Exp_DisableTensorRtOPs( const std::vector &ops) { trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end()); } void AnalysisConfig::EnableVarseqlen() { trt_use_varseqlen_ = true; } // TODO(Superjomn) refactor this, buggy. void AnalysisConfig::Update() { auto &&info = SerializeInfoCache(); if (info == serialized_info_cache_) return; // Transfer pass_builder and copy the existing compatible passes. if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) || ((use_xpu() ^ pass_builder_->use_xpu())) || ((use_npu() ^ pass_builder_->use_npu())) || ((use_ipu() ^ pass_builder_->use_ipu())) || ((use_custom_device() ^ pass_builder_->use_custom_device()))) { if (use_gpu()) { pass_builder_.reset(new GpuPassStrategy); } else if (use_ipu()) { pass_builder_.reset(new IpuPassStrategy); } else if (use_xpu()) { PADDLE_ENFORCE_EQ( use_gpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between CPU and XPU.")); pass_builder_.reset(new XpuPassStrategy); } else if (use_npu()) { PADDLE_ENFORCE_EQ( use_gpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between GPU and NPU.")); pass_builder_.reset(new NpuPassStrategy); } else if (use_custom_device()) { PADDLE_ENFORCE_EQ( use_gpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between GPU and CustomDevice.")); pass_builder_.reset(new CustomDevicePassStrategy); } else { pass_builder_.reset(new CpuPassStrategy); } } else { if (use_gpu()) { pass_builder_.reset(new GpuPassStrategy( *static_cast(pass_builder_.get()))); } else if (use_ipu()) { VLOG(1) << "IpuPassStrategy has been used."; pass_builder_.reset(new IpuPassStrategy( *static_cast(pass_builder_.get()))); } else if (use_xpu()) { PADDLE_ENFORCE_EQ( use_gpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between CPU and XPU.")); pass_builder_.reset(new XpuPassStrategy( *static_cast(pass_builder_.get()))); } else if (use_npu()) { PADDLE_ENFORCE_EQ( use_gpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between GPU and NPU.")); pass_builder_.reset(new NpuPassStrategy( *static_cast(pass_builder_.get()))); } else if (use_custom_device()) { PADDLE_ENFORCE_EQ( use_gpu(), false, platform::errors::InvalidArgument( "Only one choice can be made between GPU and CustomDevice.")); pass_builder_.reset(new CustomDevicePassStrategy( *static_cast(pass_builder_.get()))); } else { pass_builder_.reset(new CpuPassStrategy( *static_cast(pass_builder_.get()))); } } if (use_tensorrt_) { pass_builder()->ClearPasses(); for (const auto &pass : kTRTSubgraphPasses) { if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 && (pass == "conv_bn_fuse_pass")) { continue; } pass_builder()->AppendPass(pass); } } if (use_dlnne_) { pass_builder()->ClearPasses(); for (const auto &pass : kDlnneSubgraphPasses) { pass_builder()->AppendPass(pass); } } if (use_gpu() && use_cudnn_) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (!enable_ir_optim_) { LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled."; } else { pass_builder()->EnableCUDNN(); } #endif } if (use_mkldnn_) { #ifdef PADDLE_WITH_MKLDNN if (!enable_ir_optim_) { LOG(ERROR) << "EnableMKLDNN() only works when IR optimization is enabled."; } else { pass_builder()->EnableMKLDNN(); } #endif } // Quantization passes must come after all other optimization passes if (use_mkldnn_quantizer_) { if (!enable_ir_optim_) { LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization " "is enabled."; } #ifdef PADDLE_WITH_MKLDNN pass_builder()->EnableMkldnnQuantizer(); #endif } if (use_mkldnn_bfloat16_) { #ifdef PADDLE_WITH_MKLDNN pass_builder()->EnableMkldnnBfloat16(); #endif } if (use_mkldnn_int8_) { #ifdef PADDLE_WITH_MKLDNN if (!enable_ir_optim_) { LOG(ERROR) << "EnableMkldnnInt8() only works when IR optimization " "is enabled."; } else if (!use_mkldnn_) { LOG(ERROR) << "EnableMkldnnInt8() only works when MKLDNN " "is enabled."; } else { pass_builder()->EnableMkldnnInt8(); } #endif } if (disable_mkldnn_fc_passes_) { #ifdef PADDLE_WITH_MKLDNN pass_builder()->DisableMkldnnFcPasses(); #endif } #ifdef PADDLE_WITH_MKLDNN // Do not optimize when mkldnn is on if (enable_memory_optim_ && !use_mkldnn_) { #else if (enable_memory_optim_) { #endif pass_builder()->AppendAnalysisPass("memory_optimize_pass"); } if (use_lite_) { #ifndef PADDLE_WITH_LITE LOG(WARNING) << "You tried to enable the lite subgraph " "but did not have the option -DWITH_LITE compiled."; #endif pass_builder()->ClearPasses(); for (const auto &pass : kLiteSubgraphPasses) { if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(), pass) == lite_passes_filter_.end()) { pass_builder()->AppendPass(pass); } } } if (use_xpu_) { #if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU) PADDLE_ENFORCE_EQ(use_gpu_, false, platform::errors::Unavailable( "Currently, XPU and GPU cannot be enabled in the " "same analysis configuration.")); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use an XPU device, but Paddle was not compiled " "with XPU-runtime.")); #endif } if (use_npu_) { #if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU) PADDLE_ENFORCE_EQ(use_gpu_, false, platform::errors::Unavailable( "Currently, NPU and GPU cannot be enabled in the " "same analysis configuration.")); #else PADDLE_THROW(platform::errors::Unavailable( "You tried to use an NPU device, but Paddle was not compiled " "with NPU-runtime.")); #endif } if (use_ipu_) { #ifndef PADDLE_WITH_IPU PADDLE_THROW(platform::errors::Unavailable( "You tried to enable the ipu " "but did not have the option -DWITH_IPU compiled.")); #endif } if (use_custom_device_) { #ifndef PADDLE_WITH_CUSTOM_DEVICE PADDLE_THROW(platform::errors::Unavailable( "You tried to enable the custom device " "but did not have the option -DWITH_CUSTOM_DEVICE compiled.")); #endif } } std::string AnalysisConfig::SerializeInfoCache() { std::stringstream ss; ss << model_dir_; ss << prog_file_; ss << params_file_; ss << use_gpu_; ss << use_external_stream_; ss << exec_stream_; ss << use_fc_padding_; ss << gpu_device_id_; ss << xpu_device_id_; ss << memory_pool_init_size_mb_; ss << use_tensorrt_; ss << tensorrt_workspace_size_; ss << tensorrt_max_batchsize_; ss << tensorrt_min_subgraph_size_; ss << use_dlnne_; ss << dlnne_min_subgraph_size_; for (auto &op : trt_disabled_ops_) ss << op.c_str(); ss << ";"; ss << trt_use_dla_; ss << trt_dla_core_; ss << enable_memory_optim_; ss << trt_engine_memory_sharing_; ss << use_mkldnn_; ss << mkldnn_cache_capacity_; for (auto &item : mkldnn_enabled_op_types_) ss << item; ss << ";"; ss << use_mkldnn_quantizer_; ss << use_mkldnn_bfloat16_; for (auto &item : bfloat16_enabled_op_types_) ss << item; ss << use_mkldnn_int8_; for (auto &item : quantize_enabled_op_types_) ss << item; for (auto &item : quantize_excluded_op_ids_) ss << item; ss << ";"; ss << model_from_memory_; ss << with_profile_; ss << with_glog_info_; ss << enable_ir_optim_; ss << use_feed_fetch_ops_; ss << ir_debug_; ss << specify_input_name_; ss << cpu_math_library_num_threads_; ss << use_lite_; ss << use_xpu_; ss << xpu_l3_workspace_size_; ss << xpu_locked_; ss << xpu_autotune_; ss << xpu_autotune_file_; ss << xpu_precision_; ss << xpu_adaptive_seqlen_; ss << xpu_enable_multi_stream_; ss << use_npu_; ss << npu_device_id_; ss << thread_local_stream_; ss << use_ipu_; ss << ipu_device_num_; ss << ipu_micro_batch_size_; ss << ipu_enable_pipelining_; ss << ipu_batches_per_step_; ss << ipu_enable_fp16_; ss << ipu_replica_num_; ss << ipu_available_memory_proportion_; ss << ipu_enable_half_partial_; ss << ipu_enable_model_runtime_executor_; for (auto custom_op : ipu_custom_ops_info_) for (auto attr : custom_op) ss << attr; ss << ";"; for (auto pattern : ipu_custom_patterns_) for (auto attr : pattern) ss << attr; ss << ";"; for (auto &op : mixed_black_list_) ss << op.c_str(); return ss.str(); } void AnalysisConfig::SetCpuMathLibraryNumThreads( int cpu_math_library_num_threads) { cpu_math_library_num_threads_ = cpu_math_library_num_threads; Update(); } float AnalysisConfig::fraction_of_gpu_memory_for_pool() const { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) // Get the GPU memory details and calculate the fraction of memory for the // GPU memory pool. size_t gpu_total, gpu_available; platform::SetDeviceId(gpu_device_id_); platform::GpuMemoryUsage(&gpu_available, &gpu_total); double total_gpu_memory = gpu_total / 1024. / 1024.; float fraction_of_gpu_memory = static_cast(memory_pool_init_size_mb()) / total_gpu_memory; VLOG(3) << "total_gpu_memory is " << total_gpu_memory << "M, gpu_available is " << gpu_available / 1024. / 1024. << "M, memory_pool_init_size is " << memory_pool_init_size_mb() << "M."; return fraction_of_gpu_memory; #else return 0.; #endif } void AnalysisConfig::EnableMemoryOptim(bool x) { enable_memory_optim_ = x; Update(); } bool AnalysisConfig::enable_memory_optim() const { return enable_memory_optim_; } bool AnalysisConfig::trt_engine_memory_sharing() const { return trt_engine_memory_sharing_; } void AnalysisConfig::SetModelBuffer(const char *prog_buffer, size_t prog_buffer_size, const char *param_buffer, size_t param_buffer_size) { prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size); params_file_ = std::string(param_buffer, param_buffer + param_buffer_size); model_from_memory_ = true; } NativeConfig AnalysisConfig::ToNativeConfig() const { NativeConfig config; config.model_dir = model_dir_; config.prog_file = prog_file_; config.param_file = params_file_; config.use_gpu = use_gpu_; config.device = gpu_device_id_; config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool(); config.specify_input_name = specify_input_name_; return config; } void AnalysisConfig::SwitchIrDebug(int x) { ir_debug_ = x; Update(); } void AnalysisConfig::EnableProfile() { with_profile_ = true; Update(); } void AnalysisConfig::DisableGlogInfo() { with_glog_info_ = false; Update(); } void AnalysisConfig::EnableLiteEngine( AnalysisConfig::Precision precision_mode, bool zero_copy, const std::vector &passes_filter, const std::vector &ops_filter) { use_lite_ = true; lite_precision_mode_ = precision_mode; lite_passes_filter_ = passes_filter; lite_ops_filter_ = ops_filter; lite_zero_copy_ = zero_copy; Update(); } void AnalysisConfig::EnableOpenCL() { use_opencl_ = true; Update(); } void AnalysisConfig::PartiallyRelease() { prog_file_.clear(); prog_file_.shrink_to_fit(); params_file_.clear(); params_file_.shrink_to_fit(); } void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; } std::string AnalysisConfig::Summary() { const std::vector header{"Option", "Value"}; paddle::inference::TablePrinter os(header); if (!model_dir_.empty()) { os.InsertRow({"model_dir", model_dir_}); } if (!(prog_file_.empty() && params_file_.empty())) { os.InsertRow({"model_file", prog_file_}); os.InsertRow({"params_file", params_file_}); } if (model_from_memory_) { os.InsertRow({"model_from_memory", params_file_}); } os.InsetDivider(); // cpu info os.InsertRow( {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)}); os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"}); os.InsertRow( {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)}); os.InsetDivider(); // gpu info os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"}); if (use_gpu_) { os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)}); os.InsertRow({"memory_pool_init_size", std::to_string(memory_pool_init_size_mb_) + "MB"}); os.InsertRow( {"use_external_stream", use_external_stream_ ? "true" : "false"}); os.InsertRow( {"thread_local_stream", thread_local_stream_ ? "true" : "false"}); os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"}); if (use_tensorrt_) { #ifdef PADDLE_WITH_TENSORRT auto Precision2String = [](paddle::AnalysisConfig::Precision prec) -> std::string { if (prec == Precision::kFloat32) return "fp32"; else if (prec == Precision::kHalf) return "fp16"; else if (prec == Precision::kInt8) return "int8"; else return "None"; }; auto version2string = [](const std::tuple &ver) -> std::string { std::ostringstream os; int major = std::get<0>(ver); int minor = std::get<1>(ver); int patch = std::get<2>(ver); os << major << "." << minor << "." << patch; return os.str(); }; os.InsertRow( {"trt_compile_version", version2string(inference::tensorrt::GetTrtCompileVersion())}); os.InsertRow( {"trt_runtime_version", version2string(inference::tensorrt::GetTrtRuntimeVersion())}); os.InsertRow({"tensorrt_precision_mode", Precision2String(tensorrt_precision_mode_)}); os.InsertRow({"tensorrt_workspace_size", std::to_string(tensorrt_workspace_size_)}); os.InsertRow( {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)}); os.InsertRow({"tensorrt_min_subgraph_size", std::to_string(tensorrt_min_subgraph_size_)}); os.InsertRow({"tensorrt_use_static_engine", trt_use_static_engine_ ? "true" : "false"}); os.InsertRow( {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"}); // dynamic_shape os.InsertRow({"tensorrt_enable_dynamic_shape", min_input_shape_.empty() ? "false" : "true"}); os.InsertRow( {"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_ ? shape_range_info_path_ : "false"}); os.InsertRow( {"tensorrt_use_varseqlen", trt_use_varseqlen_ ? "true" : "false"}); os.InsertRow({"tensorrt_with_interleaved", trt_with_interleaved_ ? "true" : "false"}); os.InsertRow({"tensorrt_transformer_posid", tensorrt_transformer_posid_}); os.InsertRow( {"tensorrt_transformer_maskid", tensorrt_transformer_maskid_}); os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"}); if (trt_use_dla_) { os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)}); } os.InsertRow({"trt_engine_memory_sharing", trt_engine_memory_sharing_ ? "true" : "false"}); #endif } } os.InsetDivider(); // xpu info os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"}); if (use_xpu_) { os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)}); os.InsertRow( {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)}); } os.InsetDivider(); if (use_lite_) { os.InsertRow({"use_lite", use_lite_ ? "true" : "false"}); } // ir info os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"}); os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"}); os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"}); os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"}); os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"}); os.InsertRow({"collect_shape_range_info", collect_shape_range_info_ ? shape_range_info_path_ : "false"}); return os.PrintTable(); } LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames( const std::vector &names) { nnadapter_device_names = names; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties( const std::string &properties) { nnadapter_context_properties = properties; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir( const std::string &dir) { nnadapter_model_cache_dir = dir; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers( const std::string &model_cache_token, const std::vector &model_cache_buffer) { PADDLE_ENFORCE_EQ(model_cache_token.empty(), false, platform::errors::InvalidArgument( "model_cache_token should not be empty.")); PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false, platform::errors::InvalidArgument( "model_cache_buffer should not be empty.")); PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token), false, platform::errors::InvalidArgument( "model_cache_token has already been set.")); nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath( const std::string &path) { nnadapter_subgraph_partition_config_path = path; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer( const std::string &buffer) { nnadapter_subgraph_partition_config_buffer = buffer; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() { use_nnadapter = true; return *this; } LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() { use_nnadapter = false; return *this; } void AnalysisConfig::CollectShapeRangeInfo( const std::string &shape_range_info_path) { LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and " "collect the shape information of " << "all intermediate tensors in the compute graph and calculate " "the min_shape, max_shape and opt_shape."; collect_shape_range_info_ = true; PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false, platform::errors::InvalidArgument( "The shape_range_info_path should not be empty, please " "re-check the argument.")); shape_range_info_path_ = shape_range_info_path; } const std::string &AnalysisConfig::shape_range_info_path() const { return shape_range_info_path_; } bool AnalysisConfig::shape_range_info_collected() const { return collect_shape_range_info_; } void AnalysisConfig::EnableTunedTensorRtDynamicShape( const std::string &shape_range_info_path, bool allow_build_at_runtime) { shape_range_info_path_ = shape_range_info_path; trt_allow_build_at_runtime_ = allow_build_at_runtime; trt_tuned_dynamic_shape_ = true; } bool AnalysisConfig::tuned_tensorrt_dynamic_shape() const { return trt_tuned_dynamic_shape_; } bool AnalysisConfig::trt_allow_build_at_runtime() const { return trt_allow_build_at_runtime_; } void AnalysisConfig::Exp_SetBlackListOpsForMixedModel( const std::unordered_set &black_list) { mixed_black_list_ = black_list; } } // namespace paddle