/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_NGRAPH #include #include #include #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/ngraph_operator.h" #include "paddle/fluid/framework/shape_inference.h" #include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/framework/var_type.h" namespace paddle { namespace framework { static std::map pd2ng_type_map = { {proto::VarType::FP32, ngraph::element::f32}, {proto::VarType::FP64, ngraph::element::f64}, {proto::VarType::INT32, ngraph::element::i32}, {proto::VarType::INT64, ngraph::element::i64}, {proto::VarType::BOOL, ngraph::element::boolean}, }; class NgraphOperator { public: explicit NgraphOperator(const Scope& scope, const platform::Place& place, const std::vector>& ops, const std::unordered_map< std::string, ngraph::element::Type>& var_type_map, const std::unordered_set& persist, const std::unordered_set& fetches, const std::unordered_set& post_op_inputs, int is_test_or_train) : scope(scope), place(place), fused_ops(ops), var_type_map(var_type_map), persistables(persist), fetches(fetches), post_op_inputs(post_op_inputs), is_test_or_train(is_test_or_train) {} void Run(const Scope& scope, const platform::Place& place) const; private: static std::unordered_map> func_cache; const Scope& scope; const platform::Place& place; std::vector> fused_ops; std::unordered_map var_type_map; std::unordered_set persistables; std::unordered_set fetches; std::unordered_set post_op_inputs; // 0 = default; 1 = (is_test && not is_complete) // 2 = (is_test && is_complete) // 3 = (is_training && not is_complete) // 4 = (is_training && is_complete) int is_test_or_train; }; std::vector>::iterator>> FusedOperator::FusedOpIntervals( std::vector>* ops) { std::vector>::iterator>> intervals; if (ops->empty()) { return intervals; } size_t size = ops->size(); size_t left = 0; while (left < size && ops.at(left)->Type() != kFeedOpType) { ++left; } if (left == size) { return intervals; } while (left < size && ops->at(left)->Type() == kFeedOpType) { ++left; } size_t right = left; while (right < size && ops->at(right)->Type() != kFetchOpType) { ++right; } if (right == size) { return intervals; } if (left >= right) return intervals; // (left, right - 1) represents indices between feed and fetch size_t pivot = left; while (pivot < right) { auto op_type = ops->at(pivot)->Type(); if (paddle::framework::NgraphBridge::NG_NODE_MAP.find(op_type) == paddle::framework::NgraphBridge::NG_NODE_MAP.end()) { ++pivot; } else { size_t start = pivot, end = start; while (pivot < right && (paddle::framework::NgraphBridge::NG_NODE_MAP.find( ops.at(pivot)->Type()) != paddle::framework::NgraphBridge::NG_NODE_MAP.end())) { ++pivot; ++end; } std::vector>::iterator> interval = {ops->begin() + start, ops->begin() + end}; intervals.push_back(interval); } } // end while return intervals; } FusedOperator::FusedOperator( const ProgramDesc& prog, size_t block_id, std::vector>::iterator start, std::vector>::iterator end, const std::string& type = "fused_op", const VariableNameMap& inputs = {}, const VariableNameMap& outputs = {}, const AttributeMap& attrs = {}) : OperatorBase(type, inputs, outputs, attrs), pdesc(prog), block(block_id) { for (std::vector>::iterator it = start; it != end; ++it) { fused_ops.push_back(std::move(*it)); } for (std::vector>::iterator it = end; (*it)->Type() != kFetchOpType; ++it) { for (auto& var_name_item : (*it)->Inputs()) { for (auto& var_name : var_name_item.second) { post_op_inputs.insert(var_name); } } } if ((*(start - 1))->Type() == kFeedOpType && (*end)->Type() == kFetchOpType) { is_complete = true; } process(); } void FusedOperator::process() { auto& bdesc = pdesc.Block(block); for (auto& var : bdesc.AllVars()) { if (!(var->GetType() == proto::VarType::SELECTED_ROWS || var->GetType() == proto::VarType::LOD_TENSOR || var->GetType() == proto::VarType::LOD_TENSOR_ARRAY)) { continue; } auto var_name = var->Name(); if (var->Name() == framework::kEmptyVarName) { continue; } if (var_name != "fetch" && var_name != "feed") { auto pd_type = var->GetDataType(); if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) { PADDLE_THROW("Data type of var %s not found in pd2ng_type_map", var_name); } var_type_map[var_name] = pd2ng_type_map[pd_type]; } if (var->Persistable()) { persistables.insert(var->Name()); } } for (auto* op : bdesc.AllOps()) { if (op->Type() == kFetchOpType) { std::string fetch_target_name = op->Input("X")[0]; fetches.insert(fetch_target_name); } } } void FusedOperator::RunImpl(const Scope& scope, const platform::Place& place) const { int is_test_or_train = 1; auto& bdesc = pdesc.Block(block); for (auto* op : bdesc.AllOps()) { if (op->Type().find("_grad") != std::string::npos) { is_test_or_train = 3; break; } } if (is_complete) { is_test_or_train = is_test_or_train == 1 ? 2 : 4; } NgraphOperator ngraph_op(scope, place, fused_ops, var_type_map, persistables, fetches, post_op_inputs, is_test_or_train); ngraph_op.Run(scope, place); } } // namespace framework } // namespace paddle #endif