# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest def maxout_forward_naive(input, groups): s0, s1, s2, s3 = input.shape return np.ndarray([s0, s1 / groups, groups, s2, s3], \ buffer = input, dtype=input.dtype).max(axis=(2)) class TestMaxOutOp(OpTest): def setUp(self): self.op_type = "maxout" self.init_test_case() input = np.random.random(self.shape).astype("float32") output = self.MaxOut_forward_naive(input, self.groups).astype("float32") self.inputs = {'X': input} self.attrs = {'groups': self.groups} self.outputs = {'Out': output.astype('float32')} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.MaxOut_forward_naive = maxout_forward_naive self.shape = [100, 6, 2, 2] self.groups = 2 if __name__ == '__main__': unittest.main()