# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor dict_size = 30000 source_dict_dim = target_dict_dim = dict_size src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) hidden_dim = 32 word_dim = 16 IS_SPARSE = True batch_size = 10 max_length = 50 topk_size = 50 trg_dic_size = 10000 decoder_size = hidden_dim def encoder_decoder(): # encoder src_word_id = layers.data( name="src_word_id", shape=[1], dtype='int64', lod_level=1) src_embedding = layers.embedding( input=src_word_id, size=[dict_size, word_dim], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr(name='vemb')) fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh') lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4) encoder_out = layers.sequence_last_step(input=lstm_hidden0) # decoder trg_language_word = layers.data( name="target_language_word", shape=[1], dtype='int64', lod_level=1) trg_embedding = layers.embedding( input=trg_language_word, size=[dict_size, word_dim], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr(name='vemb')) rnn = fluid.layers.DynamicRNN() with rnn.block(): current_word = rnn.step_input(trg_embedding) mem = rnn.memory(init=encoder_out) fc1 = fluid.layers.fc(input=[current_word, mem], size=decoder_size, act='tanh') out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax') rnn.update_memory(mem, fc1) rnn.output(out) return rnn() def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = core.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def main(): rnn_out = encoder_decoder() label = layers.data( name="target_language_next_word", shape=[1], dtype='int64', lod_level=1) cost = layers.cross_entropy(input=rnn_out, label=label) avg_cost = fluid.layers.mean(x=cost) optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4) optimizer.minimize(avg_cost) train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.wmt14.train(dict_size), buf_size=1000), batch_size=batch_size) place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) batch_id = 0 for pass_id in xrange(2): for data in train_data(): word_data = to_lodtensor(map(lambda x: x[0], data), place) trg_word = to_lodtensor(map(lambda x: x[1], data), place) trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) outs = exe.run(framework.default_main_program(), feed={ 'src_word_id': word_data, 'target_language_word': trg_word, 'target_language_next_word': trg_word_next }, fetch_list=[avg_cost]) avg_cost_val = np.array(outs[0]) print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + " avg_cost=" + str(avg_cost_val)) if batch_id > 3: exit(0) batch_id += 1 if __name__ == '__main__': main()