/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/utils/Util.h" #include "paddle/math/TrainingAlgorithmOp.h" #include "OriginalOptimizerApi.h" #include "TensorCheck.h" #include "PerfUtils.h" using namespace paddle; // NOLINT #ifndef PADDLE_TYPE_DOUBLE P_DEFINE_double(max_diff, 1e-5, "max diff allowed"); #else P_DEFINE_double(max_diff, 1e-13, "max diff allowed"); #endif class SetMaxDiff { public: explicit SetMaxDiff(double max_diff) { max_diff_ = FLAGS_max_diff; FLAGS_max_diff = max_diff; } ~SetMaxDiff() { FLAGS_max_diff = max_diff_; } private: double max_diff_; }; #define COPY_VECTOR_TO_CPU(cpuVec, vector) \ do { \ if (vector->useGpu()) { \ cpuVec = Vector::create(vector->getSize(), false); \ cpuVec->copyFrom(*vector); \ } else { \ cpuVec = vector; \ } \ } while (0) int VectorCheckErr(const Vector& vector1, const Vector& vector2) { CHECK(vector1.getSize() == vector2.getSize()); const real* data1 = vector1.getData(); const real* data2 = vector2.getData(); size_t size = vector1.getSize(); int count = 0; for (size_t i = 0; i < size; i++) { real a = data1[i]; real b = data2[i]; if (fabs(a - b) > FLAGS_max_diff) { if ((fabsf(a - b) / fabsf(a)) > (FLAGS_max_diff / 10.0f)) { count++; } } } return count; } int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) { VectorPtr tmp1; VectorPtr tmp2; COPY_VECTOR_TO_CPU(tmp1, vector1); COPY_VECTOR_TO_CPU(tmp2, vector2); return VectorCheckErr(*tmp1, *tmp2); } #ifdef PADDLE_DISABLE_TIMER #define CHECK_VECTORPTR(vector1, vector2) \ EXPECT_EQ(VectorCheckErr(vector1, vector2), 0) #else #define CHECK_VECTORPTR(vector1, vector2) #endif typedef std::function testMatrixFunc; void testCase(testMatrixFunc matrixFunc) { #ifndef PADDLE_ONLY_CPU for (auto useGpu : {false, true}) { #else for (auto useGpu : {false}) { #endif for (auto size : {1, 32, 64, 128, 512, 1024, 4096, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152}) { LOG(INFO) << " size=" << size << " useGpu=" << useGpu; matrixFunc(size, useGpu); } } } #define INIT_VECTOR(vec1, vec2, type, size, useGpu) \ vec1[type] = Vector::create(size, useGpu); \ vec2[type] = Vector::create(size, useGpu); \ vec1[type]->rand(); \ vec2[type]->copyFrom(*vec1[type]); void testAdagrad(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu); real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT real momentum = (real)rand() / (real)RAND_MAX; // NOLINT real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT EXPRESSION_PERFORMANCE(AdagradParameterOptimizer( bufs1, epsilon, learningRate, momentum, decayRate)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM]; BaseMatrix& accum_buffer = *bufs2[PARAMETER_GRADIENT_SQURESUM]; BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM1]; BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE]; EXPRESSION_PERFORMANCE(adagradApply(value, grad, mom, accum_buffer, accum, lr, epsilon, learningRate, momentum, decayRate)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]); CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1], bufs2[PARAMETER_GRADIENT_SQURESUM1]); CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE], bufs2[PARAMETER_LEARNING_RATE]); } TEST(Training, Adagrad) { testCase(testAdagrad); } void testAdaDelta(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu); real rou = (real)rand() / (real)RAND_MAX; // NOLINT real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT real momentum = (real)rand() / (real)RAND_MAX; // NOLINT real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT EXPRESSION_PERFORMANCE(AdaDeltaParameterOptimizer( bufs1, rou, epsilon, learningRate, momentum, decayRate)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM]; BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM]; BaseMatrix& accum_update = *bufs2[PARAMETER_GRADIENT_SQURESUM1]; BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE]; EXPRESSION_PERFORMANCE(adadeltaApply(value, grad, mom, accum, accum_update, lr, rou, epsilon, learningRate, momentum, decayRate)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]); CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM], bufs2[PARAMETER_GRADIENT_SQURESUM]); CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1], bufs2[PARAMETER_GRADIENT_SQURESUM1]); CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE], bufs2[PARAMETER_LEARNING_RATE]); } TEST(Training, AdaDelta) { testCase(testAdaDelta); } template void testRMSProp(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu); /* make sure 'g - f.square()' greater than 0 */ bufs1[PARAMETER_GRADIENT_SQURESUM]->add(1.0); bufs2[PARAMETER_GRADIENT_SQURESUM]->copyFrom( *bufs1[PARAMETER_GRADIENT_SQURESUM]); real rou = (real)rand() / (real)RAND_MAX; // NOLINT real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT real momentum = (real)rand() / (real)RAND_MAX; // NOLINT real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT real accumulatedRou = rou; EXPRESSION_PERFORMANCE(RMSPropParameterOptimizer(bufs1, accumulatedRou, rou, epsilon, learningRate, momentum, decayRate, isFirstTime)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM]; BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM]; BaseMatrix& sum1 = *bufs2[PARAMETER_GRADIENT_SQURESUM1]; BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE]; EXPRESSION_PERFORMANCE(rmspropApply(value, grad, mom, sum, sum1, lr, accumulatedRou, rou, epsilon, learningRate, momentum, decayRate, isFirstTime)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]); CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM], bufs2[PARAMETER_GRADIENT_SQURESUM]); CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1], bufs2[PARAMETER_GRADIENT_SQURESUM1]); CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE], bufs2[PARAMETER_LEARNING_RATE]); } TEST(Training, RMSProp) { testCase(testRMSProp); testCase(testRMSProp); } template void testDecayedAdagrad(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu); real rou = (real)rand() / (real)RAND_MAX; // NOLINT real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT real momentum = (real)rand() / (real)RAND_MAX; // NOLINT real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT real accumulatedRou = rou; if (isFirstTime) { bufs1[PARAMETER_GRADIENT_SQURESUM]->zeroMem(); bufs2[PARAMETER_GRADIENT_SQURESUM]->zeroMem(); } EXPRESSION_PERFORMANCE(DecayedAdagradParameterOptimizer(bufs1, accumulatedRou, rou, epsilon, learningRate, momentum, decayRate, isFirstTime)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM]; BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM]; BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE]; EXPRESSION_PERFORMANCE(decayedAdagradApply(value, grad, mom, sum, lr, accumulatedRou, rou, epsilon, learningRate, momentum, decayRate, isFirstTime)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]); CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM], bufs2[PARAMETER_GRADIENT_SQURESUM]); CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE], bufs2[PARAMETER_LEARNING_RATE]); } TEST(Training, DecayedAdagrad) { testCase(testDecayedAdagrad); testCase(testDecayedAdagrad); } void testAdam(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_SECOND_MOMENTUM, size, useGpu); real beta1 = (real)rand() / (real)RAND_MAX; // NOLINT real beta2 = (real)rand() / (real)RAND_MAX; // NOLINT real beta1_power = (real)rand() / (real)RAND_MAX; // NOLINT real beta2_power = (real)rand() / (real)RAND_MAX; // NOLINT real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT EXPRESSION_PERFORMANCE(AdamParameterOptimizer( bufs1, beta1, beta2, beta1_power, beta2_power, epsilon, learningRate)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM]; BaseMatrix& v = *bufs2[PARAMETER_SECOND_MOMENTUM]; EXPRESSION_PERFORMANCE(adamApply(value, grad, mom, v, beta1, beta2, beta1_power, beta2_power, epsilon, learningRate)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]); CHECK_VECTORPTR(bufs1[PARAMETER_SECOND_MOMENTUM], bufs2[PARAMETER_SECOND_MOMENTUM]); } TEST(Training, Adam) { testCase(testAdam); } void testAdamax(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_WEIGHTED_INFINITY_NORM, size, useGpu); real beta1 = (real)rand() / (real)RAND_MAX; // NOLINT real beta2 = (real)rand() / (real)RAND_MAX; // NOLINT real alpha = (real)rand() / (real)RAND_MAX; // NOLINT int64_t step = 2; EXPRESSION_PERFORMANCE( AdamaxParameterOptimizer(bufs1, beta1, beta2, step, alpha)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM]; BaseMatrix& u = *bufs2[PARAMETER_WEIGHTED_INFINITY_NORM]; EXPRESSION_PERFORMANCE( adamaxApply(value, grad, mom, u, beta1, beta2, step, alpha)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]); CHECK_VECTORPTR(bufs1[PARAMETER_WEIGHTED_INFINITY_NORM], bufs2[PARAMETER_WEIGHTED_INFINITY_NORM]); } TEST(Training, Adamax) { #ifndef PADDLE_TYPE_DOUBLE SetMaxDiff diff(1e-4); #endif testCase(testAdamax); } void testSparseMomentum(size_t size, bool useGpu) { VectorPtr bufs1[NUM_PARAMETER_TYPES]; VectorPtr bufs2[NUM_PARAMETER_TYPES]; INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_UT, size, useGpu); INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_VT, size, useGpu); real alpha = (real)rand() / (real)RAND_MAX; // NOLINT real beta = (real)rand() / (real)RAND_MAX; // NOLINT real gamma = (real)rand() / (real)RAND_MAX; // NOLINT real tau = (real)rand() / (real)RAND_MAX; // NOLINT real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT EXPRESSION_PERFORMANCE(SparseMomentumParameterOptimizer( bufs1, alpha, beta, gamma, tau, learningRate)); BaseMatrix& value = *bufs2[PARAMETER_VALUE]; BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT]; BaseMatrix& momU = *bufs2[PARAMETER_MOMENTUM_UT]; BaseMatrix& momV = *bufs2[PARAMETER_MOMENTUM_VT]; EXPRESSION_PERFORMANCE(sparseMomentumApply( value, grad, momU, momV, alpha, beta, gamma, tau, learningRate)); CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_UT], bufs2[PARAMETER_MOMENTUM_UT]); CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_VT], bufs2[PARAMETER_MOMENTUM_VT]); } TEST(Training, SparseMomentum) { testCase(testSparseMomentum); } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); hl_start(); hl_init(FLAGS_gpu_id); return RUN_ALL_TESTS(); }