/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/utils/Util.h" #include "paddle/utils/Logging.h" #include "paddle/math/SparseMatrix.h" #include "AddtoLayer.h" #include "CosSimLayer.h" #include "CostLayer.h" #include "ExpandConvLayer.h" #include "CRFLayer.h" #include "DataLayer.h" #include "FullyConnectedLayer.h" #include "HierarchicalSigmoidLayer.h" #include "MaxLayer.h" #include "MixedLayer.h" #include "NormLayer.h" #include "PoolLayer.h" #include "TensorLayer.h" #include "TransLayer.h" #include "ValidationLayer.h" P_DEFINE_bool(log_error_clipping, false, "enable log error clipping or not"); namespace paddle { Layer::Layer(const LayerConfig& config, bool useGpu) : config_(config), useGpu_(useGpu), deviceId_(-1), needSequenceInfo_(true) {} bool Layer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (useGpu_ && FLAGS_parallel_nn) { /* gpu environment is specified by device property */ deviceId_ = config_.device(); if (deviceId_ < 0) { useGpu_ = false; } } output_.deviceId = deviceId_; for (auto& inputConfig : config_.inputs()) { std::string inputName = inputConfig.input_layer_name(); LayerPtr inputLayer; CHECK(mapGet(inputName, layerMap, &inputLayer)) << "Cannot find input layer " << inputName << " for layer " << getName(); this->addPrev(inputLayer); inputLayer->addOutputArgument(deviceId_); if (inputConfig.has_input_parameter_name()) { ParameterPtr parameter; CHECK( mapGet(inputConfig.input_parameter_name(), parameterMap, ¶meter)) << "Cannot find input parameter " << inputConfig.input_parameter_name() << " for layer " << getName(); parameter->incShared(); CHECK_EQ(parameter->getDeviceId(), getDeviceId()); parameters_.push_back(parameter); } else { parameters_.push_back(nullptr); } if (inputConfig.has_input_layer_argument()) { inputArgument_.push_back(inputConfig.input_layer_argument()); } else { inputArgument_.push_back(""); } } if (config_.has_bias_parameter_name()) { CHECK(mapGet(config_.bias_parameter_name(), parameterMap, &biasParameter_)) << "Cannot find bias parameter " << config_.bias_parameter_name() << " for layer " << getName(); biasParameter_->incShared(); CHECK_EQ(biasParameter_->getDeviceId(), getDeviceId()); } /* specify the activation function according to the configuration */ std::string action_type = config_.active_type(); activation_.reset(ActivationFunction::create(action_type)); CHECK(activation_); initNeedFlags(); markInBackward_.assign(inputLayers_.size(), false); return true; } ClassRegistrar Layer::registrar_; LayerPtr Layer::create(const LayerConfig& config) { std::string type = config.type(); if (type == "multi-class-cross-entropy") return LayerPtr(new MultiClassCrossEntropy(config)); else if (type == "rank-cost") return LayerPtr(new RankingCost(config)); else if (type == "auc-validation") return LayerPtr(new AucValidation(config)); else if (type == "pnpair-validation") return LayerPtr(new PnpairValidation(config)); // NOTE: stop adding "if" statements here. // Instead, use REGISTER_LAYER to add more layer types return LayerPtr(registrar_.createByType(config.type(), config)); } void Layer::resetSpecifyOutput(Argument& output, size_t height, size_t width, bool isValueClean, bool isGradClean) { SetDevice device(output.deviceId); Matrix::resizeOrCreate( output.value, height, width, /* trans */ false, useGpu(output.deviceId)); if (isValueClean) { output.value->zeroMem(); } if (passType_ != PASS_TEST && needGradient()) { Matrix::resizeOrCreate( output.grad, height, width, /* trans */ false, useGpu(output.deviceId)); if (isGradClean) { output.grad->zeroMem(); } } } void Layer::resizeOutput(size_t height, size_t width) { resetSpecifyOutput(output_, height, width, false, false); for (size_t i = 0; i != outputOtherDevice_.size(); i++) { resetSpecifyOutput(outputOtherDevice_[i], height, width, false, false); } } void Layer::reserveOutput(size_t height, size_t width) { resetSpecifyOutput(output_, height, width, false, true); for (size_t i = 0; i != outputOtherDevice_.size(); i++) { resetSpecifyOutput(outputOtherDevice_[i], height, width, false, true); } } void Layer::resetOutput(size_t height, size_t width) { resetSpecifyOutput(output_, height, width, true, true); for (size_t i = 0; i != outputOtherDevice_.size(); i++) { resetSpecifyOutput(outputOtherDevice_[i], height, width, true, true); } } void Layer::addOutputArgument(int deviceId) { if (deviceId == deviceId_) { output_.countIncrement(); return; } else { for (size_t i = 0; i < outputOtherDevice_.size(); i++) { if (outputOtherDevice_[i].deviceId == deviceId) { outputOtherDevice_[i].countIncrement(); return; } } } Argument argu; argu.deviceId = deviceId; outputOtherDevice_.push_back(argu); outputOtherDevice_.back().countIncrement(); } void Layer::copyOutputToOtherDevice() { for (size_t i = 0; i != outputOtherDevice_.size(); i++) { SetDevice device(outputOtherDevice_[i].deviceId); outputOtherDevice_[i].value->copyFrom(*getOutputValue(), HPPL_STREAM_DEFAULT); outputOtherDevice_[i].sequenceStartPositions = output_.sequenceStartPositions; outputOtherDevice_[i].subSequenceStartPositions = output_.subSequenceStartPositions; outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims; outputOtherDevice_[i].notifyValueReady(); } } void Layer::waitInputValue() { for (size_t i = 0; i != inputLayers_.size(); i++) { if (inputLayers_[i]->getDeviceId() != deviceId_) { getInput(i).waitValueReady(); } } } void Layer::waitAndMergeOutputGrad() { if (!output_.grad || !outputOtherDevice_.size()) { return; } for (size_t i = 0; i != outputOtherDevice_.size(); i++) { outputOtherDevice_[i].waitGradReady(); } /* merge output grad */ size_t i = 0; if (!output_.getAllCount()) { output_.grad->copyFrom(*outputOtherDevice_[0].grad, HPPL_STREAM_1); hl_stream_synchronize(HPPL_STREAM_1); i++; if (outputOtherDevice_.size() == 1) return; } Matrix::resizeOrCreate(tmpGrad_, output_.grad->getHeight(), output_.grad->getWidth(), /* trans */ false, useGpu(output_.deviceId)); for (; i != outputOtherDevice_.size(); i++) { tmpGrad_->copyFrom(*outputOtherDevice_[i].grad, HPPL_STREAM_1); hl_stream_synchronize(HPPL_STREAM_1); output_.grad->add(*tmpGrad_); } } void Layer::markAllInputGrad() { for (size_t i = 0; i != inputLayers_.size(); ++i) { if (!markInBackward_[i]) { inputLayers_[i]->getOutput(deviceId_).notifyGradReady(); } markInBackward_[i] = false; } } void Layer::markInputGrad(int inputIndex) { inputLayers_[inputIndex]->getOutput(deviceId_).notifyGradReady(); markInBackward_[inputIndex] = true; } void Layer::zeroGrad() { CHECK(output_.grad.get() != NULL); output_.grad->zeroMem(); } void Layer::initNeedFlags() { auto initFlag = [this]( bool& flag, bool (Layer::*flagQueryFunc)() const, ParameterType type) { flag = false; if (biasParameter_ && biasParameter_->hasType(type)) { flag = true; } if (!flag) { for (auto& para : parameters_) { if (para && para->hasType(type)) { flag = true; break; } } } if (!flag) { for (auto& layer : inputLayers_) { if ((layer.get()->*flagQueryFunc)()) { flag = true; } } } }; initFlag(needGradient_, &Layer::needGradient, PARAMETER_GRADIENT); } void Layer::showOutputStats() { MatrixPtr out = getOutputValue(); if (!out) return; if (!out->getElementCnt()) { LOG(INFO) << "The number of output of " << config_.name() << " is 0, skip to show the statistics"; return; } MatrixPtr outSquare; if (dynamic_cast(out.get())) { GpuSparseMatrix* tmp = dynamic_cast(out.get()); outSquare = std::make_shared(tmp->getHeight(), tmp->getWidth(), tmp->getElementCnt(), tmp->getValueType(), tmp->getFormat()); } else { outSquare = out->clone(); } outSquare->copyFrom(*out, HPPL_STREAM_DEFAULT); hl_stream_synchronize(HPPL_STREAM_DEFAULT); real mean = outSquare->getSum() / out->getElementCnt(); real min; real max; if (dynamic_cast(outSquare.get())) { auto tmpMat = dynamic_cast(outSquare.get()); min = tmpMat->getMin(); max = tmpMat->getMax(); tmpMat->square2(); LOG(INFO) << "show statistics of [none zero values] in sparse matrix"; } else { min = outSquare->getMin(); max = outSquare->getMax(); outSquare->square2(); } real std = (outSquare->getSum() / outSquare->getElementCnt()) - mean * mean; std = std > 0 ? std : 0; LOG(INFO) << "The output state of " << config_.name() << ": mean=" << mean << ", " << "std=" << std << ", " << "min=" << min << ", " << "max=" << max; } void Layer::forwardActivation() { /* activation */ activation_->forward(output_); /* dropout */ if (config_.drop_rate() > 0) { forwardDropOut(); CHECK_NE(activation_->getName(), "softmax") << "Softmax activation cannot be used with Dropout"; } if (FLAGS_show_layer_stat) { showOutputStats(); } } void Layer::backwardActivation() { /* Do error clipping */ if (config_.error_clipping_threshold() > 0.0f) { if (FLAGS_log_error_clipping) { CpuVector outGradVec(0, nullptr); outGradVec.subVecFrom( output_.grad->getData(), 0, output_.grad->getElementCnt()); real maxAbsGrad = outGradVec.getAbsMax(); if (maxAbsGrad > config_.error_clipping_threshold()) { real avgAbsGrad = outGradVec.getAbsSum() / outGradVec.getSize(); LOG(INFO) << " layer=" << config_.name() << " need clipping," << " max error=" << maxAbsGrad << " avg error=" << avgAbsGrad; } } output_.grad->clip(-config_.error_clipping_threshold(), config_.error_clipping_threshold()); } /* Do dropout for delta*/ if (config_.drop_rate() > 0 && passType_ != PASS_TEST) { MatrixPtr oGrad = getOutputGrad(); oGrad->dotMul(*oGrad, *dropOutMask_); } activation_->backward(output_); } void Layer::forwardDropOut() { auto& outV = getOutputValue(); if (passType_ == PASS_TRAIN || passType_ == PASS_METRIC_TRAIN || passType_ == PASS_METRIC_TRAIN_WITH_NOERROR) { // new dropOutMask_ if dropOutMask_ is null ptr Matrix::resizeOrCreate(dropOutMask_, outV->getHeight(), outV->getWidth(), false, useGpu(deviceId_)); dropOutMask_->randomizeUniform(); // generate a uniform random matrix dropOutMask_->biggerThanScalar(config_.drop_rate()); // random mask outV->dotMul(*outV, *dropOutMask_); // dropout } else if (passType_ == PASS_GC) { // only initialize once if (!dropOutMask_) { dropOutMask_ = Matrix::create( outV->getHeight(), outV->getWidth(), false, useGpu(deviceId_)); // We use cpu matrix to generate mask so that the mask // will be same for both gpu version and cpu version. // This will help unittest to make sure they have same result. MatrixPtr tmpMask = Matrix::create(outV->getHeight(), outV->getWidth()); tmpMask->randomizeUniform(); // generate a uniform random matrix tmpMask->biggerThanScalar(config_.drop_rate()); // random mask dropOutMask_->copyFrom(*tmpMask); } outV->dotMul(*outV, *dropOutMask_); } else { // passType == PASS_TEST outV->mulScalar(1.0 - config_.drop_rate()); } } } // namespace paddle